Computing localizations iteratively

@article{CastroJimnez2011ComputingLI,
  title={Computing localizations iteratively},
  author={F. Castro-Jim{\'e}nez and A. Leykin},
  journal={arXiv: Algebraic Geometry},
  year={2011}
}
  • F. Castro-Jiménez, A. Leykin
  • Published 2011
  • Mathematics
  • arXiv: Algebraic Geometry
  • Let $R=\bC[\bfx]$ be a polynomial ring with complex coefficients and $\Dx = \bC $ be the Weyl algebra. Describing the localization $R_f = R[f^{-1}]$ for nonzero $f\in R$ as a $\Dx$-module amounts to computing the annihilator $A = \Ann(f^a)\subset \Dx$ of the cyclic generator $f^{a}$ for a suitable negative integer $a$. We construct an iterative algorithm that uses truncated annihilators to build $A$ for planar curves. 
    2 Citations
    Scattering amplitude annihilators
    • 3
    • PDF

    References

    SHOWING 1-10 OF 11 REFERENCES
    Algorithms for algebraic analysis
    • 17
    • PDF
    Algorithms for the b-function and D-modules associated with a polynomial
    • 74
    • PDF
    Testing the Logarithmic Comparison Theorem for Free Divisors
    • 18
    • PDF
    SINGULAR: a computer algebra system for polynomial computations
    • 1,420
    • PDF
    Degree bounds for Gröbner bases in algebras of solvable type
    • 11
    • PDF
    A Localization Algorithm for D-modules
    • 36
    • PDF
    ASYMPTOTIC HODGE STRUCTURE IN THE VANISHING COHOMOLOGY
    • 144
    On microlocal b-function
    • 55
    • PDF