Computing Optimal Forms in Optimality Theory : Basic Syllabification

@inproceedings{Tesar1995ComputingOF,
  title={Computing Optimal Forms in Optimality Theory : Basic Syllabification},
  author={Bruce Tesar},
  year={1995}
}
In Optimality Theory, grammaticality is defined in terms of optimization over a large (often infinite) space of candidates. This raises the question of how grammatical forms might be computed. This paper presents an analysis of the Basic CV Syllable Theory (Prince & Smolensky 1993) showing that, despite the nature of the formal definition, computing the optimal form does not require explicitly generating and evaluating all possible candidates. A specific algorithm is detailed which computes the… CONTINUE READING
Highly Cited
This paper has 24 citations. REVIEW CITATIONS

From This Paper

Figures, tables, and topics from this paper.

References

Publications referenced by this paper.
Showing 1-9 of 9 references

Parsing in Optimality Theory: A Dynamic Programming Approach

  • Tesar, Bruce.
  • Technical
  • 1994

The Estimation of Stochastic Context-Free Grammars Using the Inside

  • K. Lari, S. J. Young
  • 1990

Time Warps, String Edits, and Macromolecules: The Theory

  • Sankoff, David, Joseph Kruskal
  • 1983

Algorithmic Schemata and Data Structures in Syntactic Processing

  • Kay, Martin.
  • CSL-80-12,
  • 1980

Selected writings 1: phonological studies

  • Jakobson, Roman.
  • The Hague: Mouton.
  • 1962

Similar Papers

Loading similar papers…