Computational and Collective Creativity: Who's Being Creative?


Creativity research has traditionally focused on human creativity, and even more specifically, on the psychology of individual creative people. In contrast, computational creativity research involves the development and evaluation of creativity in a computational system. As we study the effect of scaling up from the creativity of a computational system and individual people to large numbers of diverse computational agents and people, we have a new perspective: creativity can ascribed to a computational agent, an individual person, collectives of people and agents and/or their interaction. By asking “Who is being creative?” this paper examines the source of creativity in computational and collective creativity. A framework based on ideation and interaction provides a way of characterizing existing research in computational and collective creativity and identifying directions for future research. Human and Computational Creativity Creativity is a topic of philosophical and scientific study considering the scenarios and human characteristics that facilitate creativity as well as the properties of computational systems that exhibit creative behavior. “The four Ps of creativity”, as introduced in Rhodes (1987) and more recently summarized by Runco (2011), decompose the complexity of creativity into separate but related influences: • Person: characteristics of the individual, • Product: an outcome focus on ideas, • Press: the environmental and contextual factors, • Process: cognitive process and thinking techniques. While the four Ps are presented in the context of the psychology of human creativity, they can be modified for computational creativity if process includes a computational process. The study of human creativity has a focus on the characteristics and cognitive behavior of creative people and the environments in which creativity is facilitated. The study of computational creativity, while inspired by concepts of human creativity, is often expressed in the formal language of search spaces and algorithms. Why do we ask who is being creative? Firstly, there is an increasing interest in understanding computational systems that can formalize or model creative processes and therefore exhibit creative behaviors or acts. Yet there are still skeptics that claim computers aren’t creative, the computer is just following instructions. Second and in contrast, there is increasing interest in computational systems that encourage and enhance human creativity that make no claims about whether the computer is being or could be creative. Finally, as we develop more capable socially intelligent computational systems and systems that enable collective intelligence among humans and computers, the boundary between human creativity and computer creativity blurs. As the boundary blurs, we need to develop ways of recognizing creativity that makes no assumptions about whether the creative entity is a person, a computer, a potentially large group of people, or the collective intelligence of human and computational entities. This paper presents a framework that characterizes the source of creativity from two perspectives, ideation and interaction, as a guide to current and future research in computational and collective creativity. Creativity: Process and Product Understanding the nature of creativity as process and product is critical in computational creativity if we want to avoid any bias that only humans are creative and computers are not. While process and product in creativity are tightly coupled in practice, a distinction between the two provides two ways of recognizing computational creativity by describing the characteristics of a creative process and separately, the characteristics of a creative product. Studying and describing the processes that generate creative products focus on the cognitive behavior of a creative person or the properties of a computational system, and describing ways of recognizing a creative product focus on the characteristics of the result of a creative process. When describing creative processes there is an assumption that there is a space of possibilities. Boden (2003) refers to this as conceptual spaces and describes these spaces as structured styles of thought. In computational systems such a space is called a state space. How such spaces are changed, or the relationship between the set of known products, the space of possibilities, and the potentially creative product, is the basis for describing processes that can generate potentially creative artifacts. There are many accounts of the processes for generating creative products. Two sources are described here: Boden (2003) from the philosophical and artificial intelligence perspective and Gero (2000) from the design science perspective. Boden (2003) describes three ways in which creative products can be generated: combination, exploration, International Conference on Computational Creativity 2012 67 and transformation: each one describes the way in which the conceptual space of known products provides a basis for generating a creative product and how the conceptual space changes as a result of the creative artifact. Combination brings together two or more concepts in ways that hasn’t occurred in existing products. Exploration finds concepts in parts of the space that have not been considered in existing products. Transformation modifies concepts in the space to generate products that change the boundaries of the space. Gero (2000) describes computational processes for creative design as combination, transformation, analogy, emergence, and first principles. Combination and transformation are similar to Boden’s processes. Analogy transfers concepts from a source product that may be in a different conceptual space to a target product to generate a novel product in the target’s space. Emergence is a process that finds new underlying structures in a concept that give rise to a new product, effectively a re-representation process. First principles as a process generates new products without relying on concepts as defined in existing products. While these processes provide insight into the nature of creativity and provide a basis for computational creativity, they have little to say about how we recognize a creative product. As we move towards computational systems that enhance or contribute to human creativity, the articulation of process models for generating creative artifacts does not provide an evaluation of the product. Computational systems that generate creative products need evaluation criteria that are independent of the process by which the product was generated. There are also numerous approaches to defining characteristics of creative products as the basis for evaluating or assessing creativity. Boden (2003) claims that novelty and value are the essential criteria and that other aspects, such as surprise, are kinds of novelty or value. Wiggins (2006) often uses value to indicate all valuable aspects of a creative products, yet provides definitions for novelty and value as different features that are relevant to creativity. Oman and Tumer (2009) combine novelty and quality to evaluate individual ideas in engineering design as a relative measure of creativity. Shah, Smith, and Vargas-Hernandez (2003) associate creative design with ideation and develop metrics for novelty, variety, quality, and quantity of ideas. Wiggins (2006) argues that surprise is a property of the receiver of a creative artifact, that is, it is an emotional response. Cropley and Cropley (2005) propose four broad properties of products that can be used to describe the level and kind of creativity they possess: effectiveness, novelty, elegance, genesis. Besemer and O'Quin (1987) describe a Creative Product Semantic Scale which defines the creativity of products in three dimensions: novelty (the product is original, surprising and germinal), resolution (the product is valuable, logical, useful, and understandable), and elaboration and synthesis (the product is organic, elegant, complex, and well-crafted). Horn and Salvendy (2006) after doing an analysis of many properties of creative products, report on consumer perception of creativity in three critical perceptions: affect (our emotional response to the product), importance, and novelty. Goldenberg and Mazursky (2002) report on research that has found the observable characteristics of creativity in products to include "original, of value, novel, interesting, elegant, unique, surprising." Amabile (1982) says it most clearly when she summarizes the social psychology literature on the assessment of creativity: While most definitions of creativity refer to novelty, appropriateness, and surprise, current creativity tests or assessment techniques are not closely linked to these criteria. She further argues that “There is no clear, explicit statement of the criteria that conceptually underlie the assessment procedures.” In response to an inability to establish and define criteria for evaluating creativity that is acceptable to all domains, Amabile (1982, 1996) introduced a Consensual Assessment Technique (CAT) in which creativity is assessed by a group of judges that are knowledgeable of the field. Since then, several scales for assisting human evaluators have been developed to guide human evaluators, for example, Besemer and O'Quin's (1999) Creative Product Semantic Scale, Reis and Renzulli's (1991) Student Product Assessment Form, and Cropley et al’s (2011) Creative Solution Diagnosis Scale. Maher (2010) presents an AI approach to evaluating creativity of a product by measuring novelty, value and surprise that provides a formal model for evaluating creative products. Novelty is a measure of how different the product is from existing products and is measured as a distance from clusters of other products in a conceptual space, characterizing the artifact as similar but different. Value is a measure of how the creative product compares to other products in its class in utility, performance, or attractiveness. The measure of value uses clustering algorithms and distance measures operating on the value attributes of existing products. Surprise has to do with how we develop expectations for the next new idea. This is distinguished from novelty because it is based on tracking the progression of one or more attributes, and changing the expected next difference. Computational creativity can be described by identifying the generative processes that are associated with being creative and how the process changes the conceptual space. Alternatively, computational creativity can be asserted when the product is recognized as creative, independently of the process. However, computational creativity is more complicated than a single process that generates a selfcontained product, partly due to the different roles that people and computers play in computational creativity but also due to recent phenomena of scaling up participation to achieve collective human-computer creativity. International Conference on Computational Creativity 2012 68 Collective Creativity Collective creativity is associated with two or more people contributing to a creative process. Using the internet to develop and encourage creative communities has led to large scale collective creativity. Some examples of such creative communities are:,, and Designcrowd and 99Designs are examples of websites that source creative work from a very large community of people that identify themselves as designers. Quirky crowdsources innovative product development, where the community works together with an in-house design team to design products from idea to market. OpeningDesign is a platform for architecture and urban planning, encouraging people from different backgrounds to participate in projects and providing a space for opinion polls and crowdsourcing jobs. These platforms rely on community participation, both amateur and professional, and their websites support community discussion and various amounts of involvement. They attract a range of contributions, from the casual observer who might be motivated to comment once or twice, to the active contributor who closely tracks progress, contributes new ideas, and responds often and with minimal delay. Maher, Paulini, and Murty (2010) show how the nature of the contributions and collaboration can be considered along a spectrum of approaches, ranging from collected intelligence to collective intelligence. DesignCrowd collects individual designs and is an example of collected intelligence and Quirky is an example of collective intelligence in design by encouraging collaboration and voting. Large scale participation from individuals that may or may not have expertise in the class of products being designed or created can synthesis ideas that go beyond the capability of a single person or a more carefully constructed team. Page (2007) describes how diverse individuals bring different perspectives and heuristics to problem solving, and shows how that diversity can result in better solutions than those produced by a group of like-minded individuals. Hong and Page (2004) prove a theorem that “Diversity Trumps Ability” every time. Page (2007) argues that diversity improves problem solving, even though our individual experiences in working with a diverse group may be associated with the difficulty of understanding other viewpoints and reaching consensus. Many of the successful examples of collective creativity encourage diversity but do not require that everyone understand others’ perspectives or even necessarily to reach concensus. A recent study of communication in shows how the crowd contributes to ideation and evaluation as part of a larger design process (Paulini, Maher, and Murty, 2011). Their analysis shows that a design process that includes crowdsourcing shares processes of ideation and evaluation with individual and team design, and also includes a significant amount of social networking. Collective creativity is an emergent property of an online community where team design is structured and managed intentionally to produce an innovative product. Who is being creative? Creativity can be the result of introducing a novel and surprising idea and developing that idea into a product that is valuable in the context of an existing conceptual class of products. A creative idea can originate by bringing a different perspective or set of heuristics (as described by Page (2007)) to a conceptual class or existing patterns of design. This diversity can be achieved through social, computational and collective creativity. The various processes as described by Boden and Gero show how different algorithms or heuristics result in creative ideas. The various approaches to evaluating creativity show how creative ideas can be evaluated. The field of computational creativity now has the basis for developing and evaluating creative systems, and can benefit from characterizing individual contributions to the field. By asking “Who is being creative?” we can identify where the focus of computational creativity is now, and where there are research opportunities. Did the computer generate the creative idea or did a person, or was it an emergent structure from the interaction of people and computational systems? In this section we structure a framework around the concept of human/computer ideation and interaction, and map individual contributions onto a space of possibilities. The contributions include a sample of computational creativity drawing on the proceedings of ICCC 2011 (Ventura et al, 2011) and ICCCX (Ventura et al, 2010), including Quirky ( and Scratch (Maloney et al, 2010) to fill gaps in ICCC coverage.

Extracted Key Phrases

2 Figures and Tables

Citations per Year

Citation Velocity: 6

Averaging 6 citations per year over the last 3 years.

Learn more about how we calculate this metric in our FAQ.

Cite this paper

@inproceedings{Maher2012ComputationalAC, title={Computational and Collective Creativity: Who's Being Creative?}, author={Mary Lou Maher}, booktitle={ICCC}, year={2012} }