Computational Group Theory : Primitive permutation groups and matrix group normalisers

@inproceedings{Coutts2011ComputationalGT,
  title={Computational Group Theory : Primitive permutation groups and matrix group normalisers},
  author={Hannah J. Coutts},
  year={2011}
}
  • Hannah J. Coutts
  • Published 2011
Part I of this thesis presents methods for finding the primitive permutation groups of degree d, where 2500 ≤ d < 4096, using the O’Nan–Scott Theorem and Aschbacher’s theorem. Tables of the groups G are given for each O’Nan– Scott class. For the non-affine groups, additional information is given: the degree d of G, the shape of a stabiliser in G of the primitive action, the shape of the normaliser N in Sd of G and the rank of N . Part II presents a new algorithm NormaliserGL for computing the… CONTINUE READING

References

Publications referenced by this paper.
Showing 1-10 of 56 references

Corrigenda: “Low-dimensional representations of quasi-simple groups” [LMS J

  • G. Hiss, G. Malle
  • Comput. Math. 4 (2001), 22–63; MR1835851
  • 2001
Highly Influential
8 Excerpts

Traité des substitutions et des équations algébriques

  • C. Jordan
  • Les Grands Classiques Gauthier-Villars. [Gauthier…
  • 1989
Highly Influential
4 Excerpts

Atlas of finite groups

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson
  • Oxford University Press, Eynsham
  • 1985
Highly Influential
15 Excerpts

The computational matrix group project

  • C. R. Leedham-Green
  • Groups and computation, III
  • 1999
Highly Influential
4 Excerpts

Finite group theory

  • M. Aschbacher
  • volume 10 of Cambridge Studies in Advanced…
  • 1986
Highly Influential
10 Excerpts

Similar Papers

Loading similar papers…