Computation of the incomplete gamma function ratios and their inverse

@article{Didonato1986ComputationOT,
  title={Computation of the incomplete gamma function ratios and their inverse},
  author={A. Didonato and A. H. Morris},
  journal={ACM Trans. Math. Softw.},
  year={1986},
  volume={12},
  pages={377-393}
}
An algorithm is given for computing the incomplete gamma function ratios <italic>P</italic>(<italic>a</italic>, <italic>x</italic>) and <italic>Q></italic>(<italic>a</italic>, <italic>x</italic>) for <italic>a</italic> ⪈ 0, <italic>x</italic> ⪈ 0, <italic>a</italic> + <italic>x</italic> ≠ 0. Temme's uniform asymptotic expansions are used. The algorithm is robust; results accurate to 14 significant digits can be obtained. An' extensive set of coefficients for the Temme expansions is included. An… Expand
Efficient and Accurate Algorithms for the Computation and Inversion of the Incomplete Gamma Function Ratios
The Inverse Nakagami-m Distribution: A Novel Approach in Reliability
Computing the Incomplete Gamma Function to Arbitrary Precision
Efficient and Accurate Parallel Inversion of the Gamma Distribution
  • T. Luu
  • Mathematics, Computer Science
  • SIAM J. Sci. Comput.
  • 2015
Algorithm 969
...
1
2
3
4
5
...