# Complexity Results about Nash Equilibria

@inproceedings{Conitzer2003ComplexityRA, title={Complexity Results about Nash Equilibria}, author={Vincent Conitzer and Tuomas Sandholm}, booktitle={IJCAI}, year={2003} }

Noncooperative game theory provides a normative framework for analyzing strategic interactions. However, for the toolbox to be operational, the solutions it defines will have to be computed. In this paper, we provide a single reduction that 1) demonstrates NP-hardness of determining whether Nash equilibria with certain natural properties exist, and 2) demonstrates the NP-hardness of counting Nash equilibria (or connected sets of Nash equilibria). We also show that 3) determining whether a…

## Figures, Tables, and Topics from this paper

## 255 Citations

The Complexity of Nash Equilibria in Limit-Average Games

- Mathematics, Computer ScienceCONCUR
- 2011

It is shown that the constrained existence problem for Nash equilibria in (pure or randomised) stationary strategies is decidable and the result holds even for a restricted class of concurrent games, where nonzero rewards occur only on terminal states.

The Complexity of Nash Equilibria in Simple Stochastic Multiplayer Games

- Mathematics, Computer ScienceICALP
- 2009

It is shown that restricting the search space to equilibria whose payoffs fall into a certain interval may lead to undecidability, and a common lower bound of NP and upper bounds ofNP and PSpace are obtained.

Pure Nash equilibria: hard and easy games

- Mathematics, Computer ScienceTARK '03
- 2003

It is shown that, even in very restrictive settings, determining whether a game has a pure Nash Equilibrium is NP-hard, while deciding whether agame has a strong Nash equilibrium is ΣP2-complete, and practically relevant restrictions that lower the complexity are studied.

The Complexity of Nash Equilibria in Infinite Multiplayer Games

- Mathematics, Computer ScienceFoSSaCS
- 2008

The main result is that the resulting decision problem is NP-complete for games with co-Buchi, parity or Streett winning conditions but fixed-parameter tractable for many natural restricted classes of games with parity winning conditions.

Pure Nash Equilibria in Games with a Large Number of Actions

- Computer Science, MathematicsMFCS
- 2005

It is shown that deciding the existence of a Nash equilibrium in a strategic game is NP-complete when the number of players is large and the number and size of strategies for each player is constant, while the problem is Σ$^{p}_{\rm 2}$- complete when the Number of Players is a constant and the size of the sets of strategies is exponential.

On the complexity of constrained Nash equilibria in graphical games

- Computer Science, MathematicsTheor. Comput. Sci.
- 2009

A formal framework for specifying these kinds of requirement is introduced and investigated in the context of graphical games, where a player p may directly be interested in some of the other players only, called the neighbors of p, and the complexity of deciding the existence and of computing constrained equilibria is investigated.

On Pure Nash Equilibria in Stochastic Games

- Mathematics, Computer ScienceTAMC
- 2015

Improved undecidability results are shown by showing that pureNE and finNE problems remain undecidable for \(5\) or more players.

On Nash Equilibria in Stochastic Games

- Mathematics, Computer ScienceCSL
- 2004

It is shown that if each player has a reachability objective, that is, if the goal for each player i is to visit some subset of the states, then there exists an e-Nash equilibrium in memoryless strategies, for every e >0, however, exact Nash equilibria need not exist.

How hard is it to approximate the best Nash equilibrium?

- Computer Science, MathematicsSODA
- 2009

The quest for a PTAS for Nash equilibrium in a two-player game seeks to circumvent the PPAD-completeness of an (exact) Nash equilibrium by finding an approximate equilibrium, and has emerged as a…

Constrained Pure Nash Equilibria in Graphical Games

- Computer ScienceECAI
- 2004

This paper presents a formal framework for specifying and working with constraints on players' interaction in graphical games, by focusing on graphical games where a player p may be directly interested only on part of the other players, called neighbors of p.

## References

SHOWING 1-10 OF 108 REFERENCES

Pure Nash equilibria: hard and easy games

- Mathematics, Computer ScienceTARK '03
- 2003

It is shown that, even in very restrictive settings, determining whether a game has a pure Nash Equilibrium is NP-hard, while deciding whether agame has a strong Nash equilibrium is ΣP2-complete, and practically relevant restrictions that lower the complexity are studied.

Nash and correlated equilibria: Some complexity considerations

- Mathematics
- 1989

This paper deals with the complexity of computing Nash and correlated equilibria for a finite game in normal form. We examine the problems of checking the existence of equilibria satisfying a certain…

Efficient Computation of Equilibria for Extensive Two-Person Games

- Mathematics
- 1996

Abstract The Nash equilibria of a two-person, non-zero-sum game are the solutions of a certain linear complementarity problem (LCP). In order to use this for solving a game in extensive form, the…

Playing large games using simple strategies

- Mathematics, Computer ScienceEC '03
- 2003

The existence of ε-Nash equilibrium strategies with support logarithmic in the number of pure strategies is proved and it is proved that if the payoff matrices of a two person game have low rank then the game has an exact Nash equilibrium with small support.

A Program for Finding Nash Equilibria

- Economics
- 1993

We describe two-player simultaneous-play games. First, we use a zero-sum game to illustrate minimax, dominant, and best-response strategies. We illustrate Nash equilibria in the Prisoners’ Dilemma…

A polynomial-time nash equilibrium algorithm for repeated games

- Computer ScienceEC '03
- 2003

This approach draws on the "folk theorem" from game theory and shows how finite-state equilibrium strategies can be found efficiently and expressed succinctly in a polynomial-time algorithm.

The Expected Number of Nash Equilibria of a Normal Form Game

- Mathematics
- 2005

Fix finite pure strategy sets S1 , … , Sn , and let Se S1 ×c× Sn . In our model of a random game the agents' payoffs are statistically independent, with each agent's payoff uniformly distributed on…

The complexity of two-person zero-sum games in extensive form

- Mathematics
- 1992

Abstract This paper investigates the complexity of finding max-min strategies for finite two-person zero-sum games in the extensive form. The problem of determining whether a player with imperfect…

On the NP-completeness of finding an optimal strategy in games with common payoffs

- Mathematics, Computer ScienceInt. J. Game Theory
- 2001

It is shown that the problem of determining whether there exists a joint strategy where each player has an expected payoff of at least r is NP-complete as a function of the number of nodes in the extensive-form representation of the game.

The Structure of Nash Equilibrium in Repeated Games with Finite Automata (Now published in Econometrica, 56 (1988), pp.1259-1282.)

- Economics, Mathematics
- 1986

The authors study the Nash equilibria of a two-person, infinitely-repeated game in which players' preferences depend on repeated game payoffs and the complexity of the strategies they use. The model…