Complex Geometry and Dirac Equation

@article{Leo1998ComplexGA,
  title={Complex Geometry and Dirac Equation},
  author={S. Leo and W. Rodrigues and J. Vaz},
  journal={International Journal of Theoretical Physics},
  year={1998},
  volume={37},
  pages={2415-2431}
}
  • S. Leo, W. Rodrigues, J. Vaz
  • Published 1998
  • Physics
  • International Journal of Theoretical Physics
  • AbstractComplex geometry represents a fundamentalingredient in the formulation of the Dirac equation bythe Clifford algebra. The choice of appropriate complexgeometries is strictly related to the geometricinterpretation of the complex imaginary unit $$i = \sqrt { - 1} $$ . We discuss two possibilities which appearin the multivector algebra approach: theσ123 and σ21 complexgeometries. Our formalism provides a set of rules which allows an immediate translation between thecomplex standard Dirac… CONTINUE READING
    12 Citations
    Quaternionic Lorentz Group and Dirac Equation
    • 9
    • PDF
    Euclidean Clifford algebra
    • 23
    • PDF
    Algebraic and Dirac–Hestenes spinors and spinor fields
    • 56
    • PDF
    Right eigenvalue equation in quaternionic quantum mechanics
    • 92
    • PDF
    Classical limit of fermions in phase space
    • 9
    • PDF
    Dirac-Hestenes Lagrangian
    • 7
    • PDF
    A new structure-preserving method for quaternion Hermitian eigenvalue problems
    • 35

    References

    SHOWING 1-10 OF 20 REFERENCES