Completions of Orthomodular Lattices

@inproceedings{Bruns2004CompletionsOO,
  title={Completions of Orthomodular Lattices},
  author={Gunter Bruns and Ulf Harding},
  year={2004}
}
If X is a variety of orthomodular lattices generated by a finite orthomodular lattice the MacNeille completion of every algebra in X again belongs to X. AMS subject classilkatioo (1980). 06-xX 

References

Publications referenced by this paper.
Showing 1-8 of 8 references

A remark on Piron’s paper. Pub

I. Amemiya, H. Araki
Rex Inst. Math. Sci. Ser • 1966
View 5 Excerpts
Highly Influenced

Boolean powers as algebras of continuous functions, Dissertutiones

B. Banaschewski, E. Nelson
1980

Jbnsson, Algebras whose congruence lattices are distributive, Math. Scund

IO B.
Indexed orthomodular lattices, Math. Z • 1971
View 2 Excerpts

The completion by cuts of an orthocomplemented modular lattice

D. H. Adams
Bull. Austrul. Math. Sot • 1969

The completion by cuts of an orthocomplemented modular lattice , Bull

H. Araki
. Austrul . Math . Sot . • 1969

Hiillensysteme und Erweiterungen von Quasi-Ordnungen

B. Banaschewski
Z. Moth. rOgik Grundl. Moth • 1956

On the completion by cuts of a distributive lattice

N. Funayama
Proc. Imp. Acud. Tokyo • 1944
View 2 Excerpts

Algebras whose congruence lattices are distributive ,

IO. B. Jbnsson
Math . Scund .

Similar Papers

Loading similar papers…