Comparison of cytochrome P450- and peroxidase-dependent metabolic activation of the potent carcinogen dibenzo[a,l]pyrene in human cell lines: formation of stable DNA adducts and absence of a detectable increase in apurinic sites.

Abstract

The potent carcinogen dibenzo[a,l]pyrene (DB[a,l]P) has been reported to form both stable and depurinating DNA adducts upon activation by cytochrome P450 enzymes and/or cellular peroxidases. Only stable DB[a,l]P-DNA adducts were detected in DNA after reaction of DB[a,I]P-11,12-diol-13,14-epoxides in solution or cells in culture. To determine whether DB[a,l]P can be activated to metabolites that form depurinating adducts in cells with either high peroxidase (human leukemia HL-60 cell line) or cytochrome P450 activity (human mammary carcinoma MCF-7 cell line), cultures were treated with DB[a,l]P for 4 h, and the levels of stable adducts and apurinic (AP) sites in the DNA were determined. DNA samples from DB[a,l]P-treated HL-60 cells contained no detectable levels of either stable adducts or AP sites. MCF-7 cells exposed to 2 microM DB[a,l]P for 4 h contained 4 stable adducts per 10(6) nucleotides, but no detectable increase in AP sites. The results indicate that metabolic activation of DB[a,l]P by cytochrome P450 enzymes to diol epoxides that form stable DNA adducts, rather than one-electron oxidation catalyzed either by cytochrome P450 enzymes or peroxidases to form AP sites, is responsible for the high carcinogenic activity of DB[a,l]P.

3 Figures and Tables

Cite this paper

@article{MelendezColon1999ComparisonOC, title={Comparison of cytochrome P450- and peroxidase-dependent metabolic activation of the potent carcinogen dibenzo[a,l]pyrene in human cell lines: formation of stable DNA adducts and absence of a detectable increase in apurinic sites.}, author={Victor J. Melendez-Colon and Andreas Luch and Albrecht Seidel and William M. Baird}, journal={Cancer research}, year={1999}, volume={59 7}, pages={1412-6} }