Comparative prime-number theory. VII

@article{Knapowski1962ComparativePT,
  title={Comparative prime-number theory. VII},
  author={S. Knapowski and P. Tur{\'a}n},
  journal={Acta Mathematica Academiae Scientiarum Hungarica},
  year={1962},
  volume={14},
  pages={241-250}
}
  • S. Knapowski, P. Turán
  • Published 1962
  • Mathematics
  • Acta Mathematica Academiae Scientiarum Hungarica
  • J We remind the reader tha t z~(x, k, l) denotes the n u m b e r o f pr imes no t exceeding x, which are _= l rood k , (l, k ) is always 1. As in the previous papers , cl . . . . always denote posit ive numer ica l explicitly calculable cons tants , fur ther e l ( x ) ~ e ~ and e v ( x ) = e~_ ~ ( e l ( x ) ) , logl x = log x and l o g ~ x = Iogv~(log x), p always prime. Special a t tent ion m u s t be given to the cons tan t s e5, c~ and c~; cs m u s t he sufficiently large, c 1 large in… CONTINUE READING
    37 Citations
    Prime Number Races
    • 79
    • PDF
    Discrepancies in the distribution of prime numbers
    • 8
    • PDF
    Biases in the Shanks—Rényi Prime Number Race
    • 29
    • Highly Influenced
    • PDF
    Prime Running Functions.
    • PDF
    The Shanks-R\'enyi prime number race with many contestants
    • 7
    • PDF
    Chebyshev's bias for products of $k$ primes
    • 8
    • PDF

    References

    SHOWING 1-10 OF 20 REFERENCES