Comparative Study of Two Kernel Smoothing Techniques

  title={Comparative Study of Two Kernel Smoothing Techniques},
  author={Jir{\'i} Zelinka and V{\'i}tezslav Vesel{\'y} and Ivana Horov{\'a}},
The kernel functions (kernels) can be used in many types of nonparametric methods estimation of the density function of a random variable, estimation of the hazard function or the regression function. These methods belong to the most efficient non-parametric methods. Another nonparametric method uses so-called frames overcomplet systems of functions of some type. This paper compares the kernel smoothing and the frame smoothing with frames of a special kind the kernel functions are used for… CONTINUE READING
4 Citations
11 References
Similar Papers


Publications referenced by this paper.
Showing 1-10 of 11 references

Hilbert-space techniques for spectral representation in terms of overcomplete bases, Proceedings of the summer school DATASTAT’2001, Čihák near Žamberk (I. Horová, ed.)

  • V. Veselý
  • Folia Fac. Sci. Nat. Univ. Masaryk. Brunensis…
  • 2002
Highly Influential
4 Excerpts

An introduction to frames nad Riesz bases, Applied and Numerical Harmonic Analysis, Birkhäuser, Boston-Basel-Berlin

  • O. Christensen
  • 2003
1 Excerpt

Optimal choice of nonparametric estimates of a density and its derivatives

  • I. Horová, P. Vieu, J. Zelinka
  • Statistics & Decisions,
  • 2002
2 Excerpts

Kernel frame smoothing operators, Proceedings of the summer school RO- BUST’2000, Nečtiny near Plzeň

  • V. Veselý
  • (J. Antoch and G. Dohnal, eds.), JČMF (Society…
  • 2000
1 Excerpt

Jiří Zelinka Department of Applied Mathematics, Faculty of Science, Masaryk University in Brno, Janáčkovo nám

  • I. P. Wand, I. C. Jones, Kernel smoothing, Chapman, Hall
  • Masaryk University in Brno, Lipová 41a,
  • 1995
1 Excerpt

Non-parametric estimation of regression functions and their derivatives by the kernel method

  • T. Gasser, H. G. Müller
  • Scand. J. Statist.,
  • 1984
1 Excerpt

Similar Papers

Loading similar papers…