• Corpus ID: 238743973

Compactness of isospectral conformal Finslerian metrics set on a 3-manifold

  title={Compactness of isospectral conformal Finslerian metrics set on a 3-manifold},
  author={Gilbert Nibaruta and Pascaline Nshimirimana},
Let F be a Finslerian metric on an n−dimensional closed manifold M . In this work, we study problems about compactness of isospectral sets of conformal Finslerian metrics when n = 3. More precisely, let F̃ ∈ [F ] be a Finslerian metric in the conformal class of F whose scalar curvature is nonpositive constant. We show that the set of metrics in [F ] isospectral to F̃ is compact in the C∞-topology. 


An Introduction to Riemannian-Finsler Geometry, Springer-Verlang
  • New York,
  • 2000
BERARD, Some aspects of direct problems in spectral Geometry
  • 1985
Conformal change of Finsler-Ehresmann connections
In (3) the author studied the conformal change of Finsler met- rics and related geometrics objects by considering invariant Ehresmann connections on Finsler manifolds. In this paper, we investigate
Riemann-Finsler geometry
# Finsler Metrics # Structure Equations # Geodesics # Parallel Translations # S-Curvature # Riemann Curvature # Finsler Metrics of Scalar Flag Curvature # Projectively Flat Finsler Metrics
An Introduction to Riemannian-Finsler Geometry
  • 2000
Some Nonlinear Problems in Riemannian Geometry
1 Riemannian Geometry.- 2 Sobolev Spaces.- 3 Background Material.- 4 Complementary Material.- 5 The Yamabe Problem.- 6 Prescribed Scalar Curvature.- 7 Einstein-Kahler Metrics.- 8 Monge-Ampere
Isospectral sets of conformally equivalent metrics
Il existe des varietes M a metriques conformement equivalentes g et g' telles que g soit isospectrale a g'
finslériens sans points conjugués
  • 1971