Compact Embeddings of Vector-valued Sobolev and Besov Spaces

@inproceedings{AmannCompactEO,
  title={Compact Embeddings of Vector-valued Sobolev and Besov Spaces},
  author={H. Amann}
}
The main result of this paper is a generalization and sharpening of the Aubin-Dubinskii lemma concerning compact subsets in vectorvalued Lebesque spaces. In addition, there are given some new embedding results for vector valued Besov spaces. 

From This Paper

Topics from this paper.
35 Citations
19 References
Similar Papers

References

Publications referenced by this paper.
Showing 1-10 of 19 references

Linear and Quasilinear Parabolic Problems

  • H. Amann
  • Volume II: Function Spaces and Linear…
  • 1999
Highly Influential
5 Excerpts

Birkhäuser

  • H. Triebel, Fractals, Spectra Related to Fourier Analysis, Function Spaces
  • Basel,
  • 1997

Operator-valued Fourier multipliers, vector-valued

  • H. Amann
  • Besov spaces, and applications, Math. Nachr.,
  • 1997

A counterexample to a compact embedding theorem for functions with values in a Hilbert space

  • S. Migorski
  • Proc. Amer. Math. Soc.,
  • 1995

Analytic Semigroups and Optimal Regularity in Parabolic Equations

  • A. Lunardi
  • Birkhäuser, Basel
  • 1995

Function Spaces II

  • H. Triebel
  • Birkhäuser, Basel
  • 1992
1 Excerpt

Besov and Nikolskii fractional spaces: imbeddings and comparisons for vector valued spaces on an interval, Ann

  • J. Simon, Sobolev
  • Mat. Pura Appl.,
  • 1990

, Besov and Nikolskii fractional spaces : imbeddings and comparisons for vector valued spaces on an interval

  • Sobolev
  • Ann . Mat . Pura Appl .
  • 1987

Compact sets in the space Lp(0

  • J. Simon
  • T ;B), Ann. Mat. Pura Appl.,
  • 1987

Vector-valued Sobolev and Besov spaces

  • H.-J. Schmeisser
  • Sem. Analysis 1985/86, pages 4–44. Teubner Texte…
  • 1986
1 Excerpt

Similar Papers

Loading similar papers…