Community Structure of Bacteria Associated with Sheaths of Freshwater and Brackish Thioploca Species

Abstract

Bacterial communities associated with sheaths of Thioploca spp. from two freshwater lakes (Lake Biwa, Japan, and Lake Constance, Germany) and one brackish lake (Lake Ogawara, Japan) were analyzed with denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments. The comparison between the DGGE band patterns of bulk sediment and Thioploca filaments of Lake Biwa suggested the presence of specific bacterial communities associated with Thioploca sheaths. As members of sheath-associated communities, bacteria belonging to Bacteroidetes were detected from the samples of both freshwater lakes. A DGGE band from Thioploca of Lake Biwa, belonging to candidate division OP8, was quite closely related to another DGGE band detected from that of Lake Constance. In contrast to the case of freshwater lakes, no bacterium of Bacteroidetes or OP8 was detected from Thioploca of Lake Ogawara. However, two DGGE bands from Lake Ogawara, belonging to Chloroflexi, were quite closely related to a DGGE band from Lake Constance. Two DGGE bands obtained from Lake Biwa were closely related to phylogenetically distant dissimilatory Fe(III)-reducing bacteria. Cloning analyses for a dissimilatory sulfite reductase gene were performed on the same samples used for DGGE analysis. The results of the analyses suggest that sheaths of freshwater/brackish Thioploca have little ecological significance for the majority of sulfate reducers.

DOI: 10.1007/s00248-006-9127-8

5 Figures and Tables

Statistics

01020302008200920102011201220132014201520162017
Citations per Year

60 Citations

Semantic Scholar estimates that this publication has 60 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Kojima2006CommunitySO, title={Community Structure of Bacteria Associated with Sheaths of Freshwater and Brackish Thioploca Species}, author={Hisaya Kojima and Yoshikazu Koizumi and Manabu Fukui}, journal={Microbial Ecology}, year={2006}, volume={52}, pages={765-773} }