Communication Complexity of Collision
@inproceedings{Gs2022CommunicationCO, title={Communication Complexity of Collision}, author={Mika G{\"o}{\"o}s and Siddhartha Jain}, booktitle={Electron. Colloquium Comput. Complex.}, year={2022} }
The Collision problem is to decide whether a given list of numbers ( x 1 , . . . , x n ) ∈ [ n ] n is 1-to-1 or 2-to-1 when promised one of them is the case. We show an n Ω(1) randomised communication lower bound for the natural two-party version of Collision where Alice holds the first half of the bits of each x i and Bob holds the second half. As an application, we also show a similar lower bound for a weak bit-pigeonhole search problem, which answers a question of Itsykson and Riazanov ( CCC…
References
SHOWING 1-10 OF 26 REFERENCES
Quantum lower bound for the collision problem
- Mathematics, Computer ScienceSTOC '02
- 2002
A lower bound of Ω(n1/5) is shown on the number of queries needed by a quantum computer to solve the problem of deciding whether two sets are equal or disjoint on a constant fraction of elements.
Quantum Lower Bound for the Collision Problem with Small Range
- Mathematics, Computer ScienceTheory Comput.
- 2005
A modified version of Aaronson and Shi's quantum lower bound for the r-to-one collision problem that removes a restriction that applies only when the range has size at least 3n/2.
Quantum lower bounds for the collision and the element distinctness problems
- Computer ScienceThe 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings.
- 2002
It is proved that any quantum algorithm for finding a collision in an r-to-one function must evaluate the function /spl Omega/ ((n/r)/sup 1/3/) times, where n is the size of the domain and r|n.
Impossibility of succinct quantum proofs for collision-freeness
- MathematicsQuantum Inf. Comput.
- 2012
We show that any quantum algorithm to decide whether a function f : [n] → [n] is a permutation or far from a permutation must make Ω (n1/3/w) queries to f, even if the algorithm is given a w-qubit…
Quantum cryptanalysis of hash and claw-free functions
- Computer Science, MathematicsSIGA
- 1997
A quantum algorithm that finds collisions in arbitrary functions after only O(3√N/τ) expected evaluations of the function, more efficient than the best possible classical algorithm, even allowing probabilism.
A Polynomial Quantum Query Lower Bound for the Set Equality Problem
- Computer Science, MathematicsICALP
- 2004
It is shown that any error-bounded quantum query algorithm that solves the set equality problem must evaluate oracles \(\Omega(\sqrt[5]{\frac{n}{\ln n}})\) times, where n=|A|=|B|.
Proof complexity of natural formulas via communication arguments
- Computer Science, MathematicsElectron. Colloquium Comput. Complex.
- 2020
The result implies that the bit pigeonhole requires exponential tree-like Th( k) proofs, where Th(k) is the semantic proof system operating with polynomial inequalities of degree at most k and k = O(log1--ϵ n) for some ϵ > 0.
How significant are the known collision and element distinctness quantum algorithms?
- Computer ScienceQuantum Inf. Comput.
- 2004
The criterion that an algorithm width requires O(S) hardware to be considered significant if it produces a speedup of better than O(√S) over asimple quantum search algorithm is proposed.
Quantum lower bounds for approximate counting via laurent polynomials
- Computer Science, MathematicsElectron. Colloquium Comput. Complex.
- 2018
The complexity of approximate counting, the problem of multiplicatively estimating the size of a nonempty set S ⊆ [N], is resolved in two natural generalizations of quantum query complexity.
Quantum Algorithms for Testing Properties of Distributions
- Computer ScienceIEEE Transactions on Information Theory
- 2011
It is shown that the L-distance ∥p-q∥<sub>1</sub> can be estimated with a constant precision using only O(N-1/2) queries in the quantum settings, whereas classical computers need Ω(N<sup>1-o</sup>(1)) queries.