Communicating synapses: types and functional interpretation. Exceptions to Cajal's neuron theory.

Abstract

The neurons of the dorsal periaqueductal nucleus of the mesencephalon and their synaptic contacts were observed under a transmission electron microscope. We found various types of synapses which constituted an exception to Cajal's neuron theory (law of neuron independence). Some of these synapses had an open communicating or continuity 'passage' between the presynaptic bouton of a neuron (first neuron) and the postsynaptic portion of another neuron (second neuron). The 'communicating' passage (located in the synaptosome) is formed by the continuity of the presynaptic and postsynaptic membrane, and its limits or rims are the reflexion points of the membranes. When only two neurons intervene they could be termed 'simple communicating synapses'. We found three types: I = communicating axosomatic synapses; II = communicating axodendritic synapses, and III = communicating axoaxonic synapses'. When three neurons intervene in the synaptic contact, they could be termed 'complex communicating synapses'. In these, the first and second neurons form a normal synapse, but the lateral portion of the presynaptic bouton of the first neuron also enters into contact with a third neuron, with which it establishes an open communicating or continuity passage. The points of these passages are collateral to the synapse, and may be in the presynaptic or pre-postsynaptic portions simultaneously, communicating collaterally with the third neuron. We found a further three types: IV = complex communicating axosomatic and dendritic synapses; V = complex communicating axoaxonic and somatic synapses, and VI = complex communicating axodendritic and double-somatic synapses. It is suggested that communicating synapses may constitute an exception to Cajal's neuron theory, representing functional states for the acceleration, retardation or modulation of the synaptic function. The neurotransmitters would pass en masse through the communicating passage and the depolarization wave would pass through the rims without being retarded. In the simple communicating synapses, their action would be intensifying. In the complex communicating synapses, their action would be modulating or retarding, since the collateral communicating passage would function as an 'escape valve' through which part of the impulse reaching the presynaptic bouton would escape.

Cite this paper

@article{Santander1991CommunicatingST, title={Communicating synapses: types and functional interpretation. Exceptions to Cajal's neuron theory.}, author={R Gonz{\'a}lez Santander and G Mart{\'i}nez Cuadrado and Maria del Val Toledo Lobo and F J Mart{\'i}nez Alonso}, journal={Acta anatomica}, year={1991}, volume={142 3}, pages={249-60} }