• Corpus ID: 215786023

Comment on "The generalized Boltzmann distribution is the only distribution in which the Gibbs-Shannon entropy equals the thermodynamic entropy" by X. Gao, E. Gallicchio and A.E. Roitberg [J. Chem. Phys. 151, 034113 (2019)]

@article{Gujrati2020CommentO,
  title={Comment on "The generalized Boltzmann distribution is the only distribution in which the Gibbs-Shannon entropy equals the thermodynamic entropy" by X. Gao, E. Gallicchio and A.E. Roitberg [J. Chem. Phys. 151, 034113 (2019)]},
  author={Purushottam D. Gujrati},
  journal={arXiv: Chemical Physics},
  year={2020}
}
  • P. Gujrati
  • Published 16 April 2020
  • Economics
  • arXiv: Chemical Physics
The title of the paper leads to an incorrect conclusion as we show that the equilibrium result of the paper is a special limit of a general result for nonequilibrium systems in internal equilibrium already available in the literature. We also point out some of the limitations of the approach taken by the authors. 

References

SHOWING 1-9 OF 9 REFERENCES

The Nature Of The Chemical Bond

TLDR
The the nature of the chemical bond is universally compatible with any devices to read, and is available in the authors' digital library an online access to it is set as public so you can get it instantly.

The thermomechanics of nonlinear irreversible behaviors : an introduction

Introduction - a post-Duhemian thermodynamics thermostatics and thermodynamics various thermodynamics thermodynamics with internal variables applications - general framework viscosity in complex

現代の熱力学 = Modern thermodynamics

第0章 熱力学の目的 第1章 熱力学の諸概念 第2章 簡単な物質の性質 第3章 熱力学第一法則 第4章 熱力学第二法則 第5章 エントロピー 第6章 第二法則の発展 第7章 第二法則の工学的応用 第8章 統計力学序論 付録

Statistical Physics

Statistical Physics. By F. Mandl. Pp. xiii + 379. (Wiley: London and New York, July 1971.) £2.75. Statistical Physics. By A. Isihara. Pp. xv + 439. (Academic: New York and London, June 1971.) $18.50;

Phys

  • 151, 034113
  • 2019

Phys

  • 7, 103
  • 1939

Phys

  • Rev. E 81, 051130
  • 2010

Entropy 20

  • 149
  • 2018

Entropy 17

  • 710
  • 2015