Combustion front dynamics in the combustion synthesis of refractory metal carbides and di-borides using time-resolved X-ray diffraction.

Abstract

A compact diffraction-reaction chamber, using a 2-inch photodiode array detector, has been employed to investigate the chemical dynamics at the combustion front of a selected series of refractory metal carbides and di-borides from their constituent element reactants as well as binary products from B4C as a reactant. These systems are denoted as (i) M + C --> MC; (ii) M + 2B --> MB2; and (iii) 3M + B4C --> 2MB2 + MC, where M = Ti, Zr, Nb, Hf or Ta. Time-resolved X-ray diffraction using intense synchrotron radiation at frame rates up to 10 frames s(-1) (or 100 ms frame(-1)) was employed. The combustion reactions were found to complete within 200-400 ms. In contrast to the Ta + C --> TaC combustion system studied earlier, in which a discernible intermediate sub-carbide phase was first formed, reacted further and disappeared to yield the final TaC product, no intermediate sub-carbide or sub-boride was detected in the current systems. Combustion for the Ti, Zr and Hf systems involved a liquid phase, in which the adiabatic temperatures Tad are well above the melting points of the respective reactant metals and have a typical combustion front velocity of 5-6 mm s(-1). The Nb and Ta systems have lower Tad, involving no liquid phase. These are truly solid combustion systems and have a lower combustion front velocity of 1-2 mm s(-1). The current study opens up a new avenue to chemical dynamics and macrokinetic investigations of high-temperature solid-state reactions.

Cite this paper

@article{Wong2006CombustionFD, title={Combustion front dynamics in the combustion synthesis of refractory metal carbides and di-borides using time-resolved X-ray diffraction.}, author={Joe Wong and Edmund M. Larson and Paul Waide and Ronald Frahm}, journal={Journal of synchrotron radiation}, year={2006}, volume={13 Pt 4}, pages={326-35} }