Coincidence Site Modules in 3-Space

  title={Coincidence Site Modules in 3-Space},
  author={Michael Baake and Peter A. B. Pleasants and Ulf Rehmann},
  journal={Discrete & Computational Geometry},
The coincidence site lattice (CSL) problem and its generalization toZ-modules in Euclidean 3-space is revisited, and various results and conjectures are proved in a unified way, by using maximal orders in quaternion algebras of class number 1 over real algebraic number fields. 

From This Paper

Figures, tables, and topics from this paper.


Publications referenced by this paper.
Showing 1-10 of 20 references

Arithmétique des Algèbres de Quaternions

  • M.-F. Vignéras
  • LNM 800,
  • 1980
Highly Influential
9 Excerpts

Vorlesungen über die Zahlentheorie der Quaternionen, Springer, Berlin (1919)

  • A. Hurwitz
  • 1919
Highly Influential
5 Excerpts

Multiple CSLs for cubic lattices

  • P. Zeiner
  • Received September
  • 2006
Highly Influential
4 Excerpts

Maximal Orders, reprint

  • I. Reiner
  • 2003
Highly Influential
6 Excerpts

Coincidence rotations for cubic lattices

  • H. Grimmer
  • Scripta Met
  • 1973
Highly Influential
6 Excerpts

Similar Papers

Loading similar papers…