Cluster algebras are commutative rings with a set of distinguished generators having a remarkable combinatorial structure. They were introduced by Fomin and Zelevinsky in 2000 in the context of Lie theory, but have since appeared in many other contexts, from Poisson geometry to triangulations of surfaces and Teichmüller theory. In this expository paper we give an introduction to cluster algebras, and illustrate how this framework naturally arises in Teichmüller theory. We then sketch how the… CONTINUE READING