Clique-sums, tree-decompositions and compactness

@article{Krz1990CliquesumsTA,
  title={Clique-sums, tree-decompositions and compactness},
  author={Igor Kr{\'i}z and Robin Thomas},
  journal={Discrete Mathematics},
  year={1990},
  volume={81},
  pages={177-185}
}
The aim of this paper is to extend certain results of finite graph theory to infinite graphs and to show a limitation of this. Recall that a graph G is a minor of a graph H if G can be obtained from a subgraph of H by contraction of edges. There are several so-called excluded minor theorems in finite graph theory, i.e. statements describing finite graphs without minors isomorphic to members of a given list of finite graphs. The celebrated Kuratowski’s theorem [4] is also of this form: Finite… CONTINUE READING

From This Paper

Figures, tables, and topics from this paper.

References

Publications referenced by this paper.
Showing 1-9 of 9 references

Configurations in graphs of large minimum degree, connectivity or chromatic number

C. Thomassen
1986

Graph Minors XII, Excluding a non-planar graph

N. Robertson, P. D. Seymour
1986

Generalizing Kuratowski’s theorem, Congressus numerantium

N. Robertson, P. D. Seymour
1984

Zur Klassifikation der endlichen Graphen nach H

R. Hahn
Hadwiger and K. Wagner, Math. Ann • 1967

Simpliziale Zerf%llungen beliebiger (endlicher oder unendlicher

R. Hahn
Graphen, Math. Ann • 1964

eber eine Erweiterung des Satzes von Kuratowski

K. Wagner
Deutsche Math • 1937

uber eine Eigenschaft der ebenen Komplexe

K. Wagner
Math. Ann • 1937

Sur le probltme des courbes gauches en topologie

K. Kuratowski
Fund. Math • 1930

Similar Papers

Loading similar papers…