Corpus ID: 55788761

Classical and weak solutions for semilinear parabolic equations with Preisach hysteresis

@article{Jais2008ClassicalAW,
  title={Classical and weak solutions for semilinear parabolic equations with Preisach hysteresis},
  author={Mathias Jais},
  journal={Opuscula Mathematica},
  year={2008},
  volume={28},
  pages={47-62}
}
  • Mathias Jais
  • Published 2008
  • Mathematics
  • Opuscula Mathematica
  • We consider the solvability of the semilinear parabolic differential equation \[\frac{\partial u}{\partial t}(x,t)- \Delta u(x,t) + c(x,t)u(x,t) = \mathcal{P}(u) + \gamma (x,t)\] in a cylinder \(D=\Omega \times (0,T)\), where \(\mathcal{P}\) is a hysteresis operator of Preisach type. We show that the corresponding initial boundary value problems have unique classical solutions. We further show that using this existence and uniqueness result, one can determine the properties of the Preisach… CONTINUE READING
    3 Citations

    References

    SHOWING 1-10 OF 12 REFERENCES
    Uniqueness of recovery of some systems of semilinear partial differential equations
    • 22
    The inverse problem of determination of a nonlinear source in a hyperbolic equation
    • 13
    Inverse Problems for Partial Differential Equations
    • 727
    SECOND ORDER PARABOLIC DIFFERENTIAL EQUATIONS
    • 1,180
    Differential models of hysteresis
    • 977
    • PDF
    Hysteresis and Phase Transitions
    • 1,304
    Inverse probleme parabolischer differentialgleichungen mit hysterese
    • Diplomarbeit Mathias Jais, Technische Universität München,
    • 2005
    Hysteresis, convexity and dissipation in hyperbolic equations
    • 321
    • PDF