Classical and weak solutions for semilinear parabolic equations with Preisach hysteresis
@article{Jais2008ClassicalAW, title={Classical and weak solutions for semilinear parabolic equations with Preisach hysteresis}, author={Mathias Jais}, journal={Opuscula Mathematica}, year={2008}, volume={28}, pages={47-62} }
We consider the solvability of the semilinear parabolic differential equation \[\frac{\partial u}{\partial t}(x,t)- \Delta u(x,t) + c(x,t)u(x,t) = \mathcal{P}(u) + \gamma (x,t)\] in a cylinder \(D=\Omega \times (0,T)\), where \(\mathcal{P}\) is a hysteresis operator of Preisach type. We show that the corresponding initial boundary value problems have unique classical solutions. We further show that using this existence and uniqueness result, one can determine the properties of the Preisach… CONTINUE READING
3 Citations
References
SHOWING 1-10 OF 12 REFERENCES
Uniqueness of recovery of some systems of semilinear partial differential equations
- Mathematics
- 2001
- 22
The inverse problem of determination of a nonlinear source in a hyperbolic equation
- Mathematics
- 1998
- 13
Inverse probleme parabolischer differentialgleichungen mit hysterese
- Diplomarbeit Mathias Jais, Technische Universität München,
- 2005