Class Steiner Trees and VLSI-design

  title={Class Steiner Trees and VLSI-design},
  author={Edmund Ihler and Gabriele Reich and Peter Widmayer},
  journal={Discrete Applied Mathematics},
We consider a generalized version of the Steiner problem in graphs, motivated by the wire routing phase in physical VLSI design: given a connected, undirected distance graph with required classes of vertices and Steiner vertices, find a shortest connected subgraph containing at least one vertex of each required class. We show that this problem is NP-hard, even if there are no Steiner vertices and the graph is a tree. Moreover, the same complexity result holds if the input class Steiner graph… CONTINUE READING
23 Citations
23 References
Similar Papers


Publications referenced by this paper.
Showing 1-10 of 23 references

A note on two problems in connection with graphs

  • E. W. Dijkstra
  • Numer. Math
  • 1959
Highly Influential
4 Excerpts

Approximationsalgorithmen fur Optimierungsprobleme, insbesondere fur das Problem Class Tree, Ph.D. thesis, lnstitut fiir Informatik

  • E. Ihler, Zur Ubertragbarkeit van
  • Universitat Freiburg, Deutschland,
  • 1993

Zur Komplexitit von Graphen- und geometrischen Problemen bei farbigen Knoten und Punkten: Effiziente Algorithmen und Heuristiken

  • G. Reich
  • Ph.D. thesis, lnstitut fur Informatik…
  • 1992

Similar Papers

Loading similar papers…