Clash: Joint Analysis of Strong-lensing, Weak-lensing Shear, and Magnification Data for 20 Galaxy Clusters


We present a comprehensive analysis of strong-lensing, weak-lensing shear and magnification data for a sample of 16 X-ray-regular and 4 high-magnification galaxy clusters at 0.19 < ∼ z < ∼ 0.69 selected from the Cluster Lensing And Supernova survey with Hubble (CLASH). Our analysis combines constraints from 16-band Hubble Space Telescope observations and wide-field multi-color imaging taken primarily with Suprime-Cam on the Subaru Telescope, spanning a wide range of cluster radii (10′′–16′). We reconstruct surface mass density profiles of individual clusters from a joint analysis of the full lensing constraints, and determine masses and concentrations for all clusters. We find internal consistency of the ensemble mass calibration to be≤ 5%± 6% in the one-halo regime (200–2000 kpch−1) by comparison with the CLASH weak-lensing-only measurements of Umetsu et al. For the X-ray-selected subsample of 16 clusters, we examine the concentration–mass (c–M ) relation and its intrinsic scatter using a Bayesian regression approach. Our model yields a mean concentration of c|z=0.34 = 3.95 ± 0.35 at M200c ' 14 × 10M and an intrinsic scatter of σ(ln c200c) = 0.13 ± 0.06, in excellent agreement with Λ cold dark matter predictions when the CLASH selection function based on X-ray morphological regularity and the projection effects are taken into account. We also derive an ensembleaveraged surface mass density profile for the X-ray-selected subsample by stacking their individual profiles. The stacked lensing signal is detected at 33σ significance over the entire radial range ≤ 4000 kpch−1, accounting for the effects of intrinsic profile variations and uncorrelated large-scale structure along the line of sight. The stacked mass profile is well described by a family of density profiles predicted for cuspy darkmatter-dominated halos in gravitational equilibrium, namely, the Navarro–Frenk–White (NFW), Einasto, and DARKexp models, whereas the single power-law, cored isothermal and Burkert density profiles are disfavored by the data. We show that cuspy halo models that include the large-scale two-halo term provide improved agreement with the data. For the NFW halo model, we measure a mean concentration of c200c = 3.79 −0.28 at M200c = 14.1 +1.0 −1.0 × 10M , demonstrating consistency between complementary analysis methods.

18 Figures and Tables

Cite this paper

@inproceedings{Umetsu2016ClashJA, title={Clash: Joint Analysis of Strong-lensing, Weak-lensing Shear, and Magnification Data for 20 Galaxy Clusters}, author={Keiichi Umetsu and Daniel Gruen and Julian C Merten and Megan Donahue and Marc Postman}, year={2016} }