Chromosome condensation activity in the cytoplasm of anucleate and nucleate fragments of mouse oocytes.

Abstract

The activity of maturation promoting factor (MPF) which causes chromosome condensation and subsequent oocyte maturation was investigated in mouse oocytes using polyethylene-glycol-mediated cell fusion technique. Fully grown oocytes were bisected at germinal vesicle (GV) stage or shortly after germinal vesicle breakdown (GVBD) into anucleate and nucleate fragments. After 2-3 or 15-17 hr of culture these fragments were fused with interphase blastomeres from two-cell embryos. It was found that almost all the anucleate oocyte fragments cultured for a short term (2-3 hr), regardless of whether they were produced at GV stage or after GVBD, induced premature chromosome condensation in the blastomere nuclei, whereas only about 20% of those cultured for a long term (15-17 hr) could do so. On the other hand, the nucleate fragments always retain the cytoplasmic activity to induce chromosome condensation. Thus we suggested that the MPF initially could appear in mouse oocytes independently of the GV, that the mixing of GV material with the oocyte cytoplasm following GVBD had no effect on the activity of MPF in anucleate fragments, and that oocyte chromosomes or some components associated with them could play a significant role in maintaining the MPF activity.

Cite this paper

@article{Baakier1986ChromosomeCA, title={Chromosome condensation activity in the cytoplasm of anucleate and nucleate fragments of mouse oocytes.}, author={Hanna Bałakier and Yumi Masui}, journal={Developmental biology}, year={1986}, volume={113 1}, pages={155-9} }