Chow – Künneth projectors for modular varieties

@inproceedings{Gordon2002ChowK,
  title={Chow – K{\"u}nneth projectors for modular varieties},
  author={B. Brent Gordon and Masaki Hanamura and Jacob P. Murre},
  year={2002}
}
We show the existence of the Chow–Künneth projectors for certain varieties, including Kuga–Shimura varieties of Hilbert modular varieties. The Chow–Künneth projectors of a smooth projective variety are, by definition, mutually orthogonal idempotents of the Chow ring of self-correspondences which give decomposition of the total cohomology of the variety into degree pieces. To cite this article: B.B. Gordon et al., C. R. Acad. Sci. Paris, Ser. I 335 (2002) 745–750.  2002 Académie des sciences… CONTINUE READING

References

Publications referenced by this paper.
Showing 1-10 of 12 references

On a conjectural filtration on the Chow groups of an algebraic variety I and II

J. P. Murre
Indag. Math. 2 • 1993
View 3 Excerpts
Highly Influenced

Standard conjectures on algebraic cycles

A. Grothendieck
in: Algebraic Geometry, Bombay Colloquium, Oxford, 1969, pp. 193–199. 749 B.B. Gordon et al. / C. R. Acad. Sci. Paris, Ser. I 335 • 2002
View 1 Excerpt

Motivic decomposition of abelian schemes and the Fourier transform

C. Deninger, J. P. Murre
J. Reine Angew. Math. 422 • 1991
View 2 Excerpts

Mixed Hodge modules

M. Saito
Publ. RIMS, Kyoto Univ. 26 • 1990
View 2 Excerpts

On the motive of an algebraic surface

J. P. Murre
J. Reine Angew. Math. 409 • 1990
View 1 Excerpt

Intersection Cohomology

A. Borel
in: Prog. in Math., Vol. 50, Birkhäuser • 1984

Intersection Theory

W. Fulton
Springer • 1984
View 1 Excerpt

Faisceaux Pervers

A. Beilinson, J. Bernstein, P. Deligne
Analyse et topologie sur les espaces singuliers, Astérisque 100 • 1982
View 2 Excerpts

Toroidal Compactification of Siegel Spaces

Y. Namikawa
in: Lecture Notes in Math., Vol. 812, Springer-Verlag • 1980
View 1 Excerpt

Similar Papers

Loading similar papers…