Chlorodifluoroacetyl cyanide, ClF2CC(O)CN: synthesis, structure, and spectroscopic characterization.

Abstract

The novel molecule difluorochloroacetyl cyanide, ClF(2)CC(O)CN, has been characterized by IR (gas phase, Ar matrix), Raman (liquid), (19)F and (13)C NMR, and photoelectron (PES) spectroscopies; photoionization mass spectrometry (PIMS); and gas electron diffraction (GED). The conformational properties of ClF(2)CC(O)CN have been studied by joint application of vibrational spectroscopy, GED, and quantum chemical calculations. The existence of two conformers is detected in the gas and liquid phases, in which the C-Cl bond adopts gauche and syn orientations with respect to the C═O group. The computed enthalpy difference is in harmony with the experimental results of the gauche being more stable than the syn conformer by ΔH° = 1.3 kcal mol(-1) (MP2/cc-pVTZ). The valence electronic properties and the possible ionization and dissociation processes of the title compound are studied using the PES and PIMS. The experimental first vertical ionization energy of 12.0 eV corresponds to the ejection of an electron of the oxygen lone pairs. Taking into account the properties and broad applications of acyl cyanides, ClF(2)CC(O)CN is a promising new precursor in preparative chemistry.

DOI: 10.1021/ic201390h

Cite this paper

@article{Ramos2011ChlorodifluoroacetylCC, title={Chlorodifluoroacetyl cyanide, ClF2CC(O)CN: synthesis, structure, and spectroscopic characterization.}, author={Luis A. Ramos and Sonia E Ulic and Rosana Mariel Romano and Shengrui Tong and Maofa Ge and Yury V Vishnevskiy and Raphael J F Berger and Norbert W Mitzel and Helmut Beckers and Helge Willner and Carlos O Della V{\'e}dova}, journal={Inorganic chemistry}, year={2011}, volume={50 19}, pages={9650-9} }