• Published 2014

Chinese Named Entity Relation Extraction Based-on the Syntactic and Semantic Features

@inproceedings{Guo2014ChineseNE,
  title={Chinese Named Entity Relation Extraction Based-on the Syntactic and Semantic Features},
  author={Xiyue Guo and He Ting-ting and Hu Xiao-hua and Qianjun Chen},
  year={2014}
}
基于句法语义特征的中文实体关系抽取 郭喜跃 ,何婷婷 ,胡小华 ,陈前军 1,4 (1.华中师范大学国家数字化学习工程技术研究中心,湖北省武汉市 430079; 2.华中师范大学计算机学院,湖北省武汉市 430079; 3.兴义民族师范学院信息技术学院,贵州省兴义市 562400; 4. 湖北大学信息与网络中心 湖北省武汉市 430062) 摘要:实体关系抽取的核心问题是实体关系特征的选择。以往的研究通常都以词法特征、实体原始特征等 来刻画实体关系,其抽取效果已难再提高。在传统方法的基础上,本文提出一种基于句法特征、语义特征 的实体关系抽取方法,融入了依存句法关系、核心谓词、语义角色标注等特征,选择 SVM 作为机器学习的 实现途径,以真实新闻文本作为语料进行实验。实验结果表明该方法的 F1 值有明显提升。 关键词:句法特征;语义特征;实体关系抽取;SVM 中图分类号:TP391 文献标识码:A 

Citations

Publications citing this paper.
SHOWING 1-7 OF 7 CITATIONS

Semantic Technology

  • Lecture Notes in Computer Science
  • 2015
VIEW 9 EXCERPTS
CITES METHODS & BACKGROUND
HIGHLY INFLUENCED

Incorporating Forward and Backward Instances in a Bi-LSTM-CNN Model for Relation Classification

  • 2018 IEEE 4th International Conference on Computer and Communications (ICCC)
  • 2018
VIEW 1 EXCERPT
CITES BACKGROUND

A Novel Method for Open Relation Extraction from Public Announcements of Chinese Listed Companies

  • 2017 Fifth International Conference on Advanced Cloud and Big Data (CBD)
  • 2017
VIEW 1 EXCERPT
CITES BACKGROUND

The Risk Assessment of Breast Tumors Based on Text Data of Ultrasound Reports

  • 2017 IEEE International Symposium on Parallel and Distributed Processing with Applications and 2017 IEEE International Conference on Ubiquitous Computing and Communications (ISPA/IUCC)
  • 2017
VIEW 1 EXCERPT
CITES METHODS