Chern classes of crystals
@article{Esnault2015ChernCO, title={Chern classes of crystals}, author={H'elene Esnault and Atsushi Shiho}, journal={arXiv: Algebraic Geometry}, year={2015} }
The crystalline Chern classes of the value of a locally free crystal vanish on a smooth variety defined over a perfect field. Out of this we conclude new cases of de Jong's conjecture relating the geometric \'etale fundamental group of a smooth projective variety defined over a perfect field and the triviality of its category of isocrystals. We also discuss the case of the Gau{\ss}-Manin convergent isocrystal.
5 Citations
Constancy of Newton polygons of $F$-isocrystals on Abelian varieties and isotriviality of families of curves
- Mathematics
- 2017
- 7
- Highly Influenced
- PDF
A crystalline incarnation of Berthelot's conjecture and K\"unneth formula for isocrystals
- Mathematics
- 2018
- 1
- PDF
A G ] 6 F eb 2 01 8 A note on rank 1 log extendable isocrystals on non-proper varieties
- 2018
References
SHOWING 1-10 OF 56 REFERENCES
Langlands correspondence for isocrystals and the existence of crystalline companions for curves
- Mathematics
- 2013
- 51
- PDF
Chern class and Riemann-Roch theorem for cohomology theory without homotopy invariance
- Mathematics
- 2013
- 8
- PDF
Classes de Chern et classes de cycles en cohomologie de Hodge-Witt logarithmique
- Mathematics
- 1985
- 116
- PDF