# Chern–Simons theory with Wilson lines and boundary in the BV–BFV formalism

@article{Alekseev2012ChernSimonsTW, title={Chern–Simons theory with Wilson lines and boundary in the BV–BFV formalism}, author={A. Alekseev and Yves Barmaz and Pavel Mnev}, journal={Journal of Geometry and Physics}, year={2012}, volume={67}, pages={1-15} }

## 12 Citations

### Quantum Chern–Simons Theories on Cylinders: BV-BFV Partition Functions

- PhysicsCommunications in Mathematical Physics
- 2022

We compute partition functions of Chern–Simons type theories for cylindrical spacetimes $$I \times \Sigma $$
I
×
Σ
, with I an interval and $$\dim \Sigma = 4l+2$$
dim
Σ
=
4
l
+
2
…

### Formal global perturbative quantization of the Rozansky–Witten model in the BV-BFV formalism

- MathematicsJournal of Geometry and Physics
- 2022

### A Higher Stacky Perspective on Chern–Simons Theory

- Physics
- 2015

The first part of this text is a gentle exposition of some basic constructions and results in the extended prequantum theory of Chern–Simons-type gauge field theories. We explain in some detail how…

### CLASSICAL AND QUANTUM ASPECTS OF FIVE-DIMENSIONAL CHERN SIMONS GAUGE THEORY

- Mathematics
- 2014

In this paper, we investigate the classical and quantum aspects of five-dimensional Chern–Simons theory. As a constrained Hamiltonian system we compute the Dirac brackets among the canonical…

### Gluing I: Integrals and Symmetries

- Mathematics
- 2018

We review some aspects of the cutting and gluing law in local quantum field
theory. In particular, we emphasize the description of gluing by a path
integral over a space of polarized boundary…

### Gluing. Part I. Integrals and symmetries

- MathematicsJournal of High Energy Physics
- 2020

We review some aspects of the cutting and gluing law in local quantum field theory (QFT) and study it from a new point of view. In particular, we emphasize the description of gluing by a path…

### Semiclassical Quantization of Classical Field Theories

- Physics
- 2015

These lectures are an introduction to formal semiclassical quantization of classical field theory. First we develop the Hamiltonian formalism for classical field theories on space time with boundary.…

### Towards Holography in the BV-BFV Setting

- PhysicsAnnales Henri Poincaré
- 2019

We show how the BV-BFV formalism provides natural solutions to descent equations and discuss how it relates to the emergence of holographic counterparts of given gauge theories. Furthermore, by means…

### Towards Holography in the BV-BFV Setting

- PhysicsAnnales Henri Poincaré
- 2019

We show how the BV-BFV formalism provides natural solutions to descent equations and discuss how it relates to the emergence of holographic counterparts of given gauge theories. Furthermore, by means…

### O ct 2 01 9 TOWARDS HOLOGRAPHY IN THE BV-BFV SETTING

- Physics
- 2019

We show how the BV-BFV formalism provides natural solutions to descent equations, and discuss how it relates to the emergence of holographic counterparts of given gauge theories. Furthermore, by…

## References

SHOWING 1-10 OF 14 REFERENCES

### Chern-Simons states at genus one

- Mathematics
- 1994

We present a rigorous analysis of the Schrödinger picture quantization for theSU(2) Chern-Simons theory on 3-manifold torusxline, with insertions of Wilson lines. The quantum states, defined as gauge…

### Classical BV Theories on Manifolds with Boundary

- Mathematics
- 2014

In this paper we extend the classical BV framework to gauge theories on spacetime manifolds with boundary. In particular, we connect the BV construction in the bulk with the BFV construction on the…

### The Chern-Simons theory and knot polynomials

- Mathematics
- 1989

The Chern-Simons gauge theory is studied using a functional integral quantization. This leads to a differential equation for expectations of Wilson lines. The solution of this differential equation…

### The Geometry of the Master Equation and Topological Quantum Field Theory

- Mathematics
- 1997

In Batalin–Vilkovisky formalism, a classical mechanical system is specified by means of a solution to the classical master equation. Geometrically, such a solution can be considered as a QP-manifold,…

### On the AKSZ Formulation of the Poisson Sigma Model

- Mathematics
- 2001

We review and extend the Alexandrov–Kontsevich–Schwarz–Zaboronsky construction of solutions of the Batalin–Vilkovisky classical master equation. In particular, we study the case of sigma models on…

### SU(2) Chern-Simons theory at genus zero

- Mathematics
- 1991

We present a detailed study of the Schrödinger picture space of states in theSU(2) Chern-Simons topological gauge theory in the simplest geometry. The space coincides with that of the solutions of…

### Quantum field theory and the Jones polynomial

- Mathematics
- 1989

It is shown that 2+1 dimensional quantum Yang-Mills theory, with an action consisting purely of the Chern-Simons term, is exactly soluble and gives a natural framework for understanding the Jones…

### AKSZ–BV Formalism and Courant Algebroid-Induced Topological Field Theories

- Mathematics
- 2006

We give a detailed exposition of the Alexandrov–Kontsevich–Schwarz– Zaboronsky superfield formalism using the language of graded manifolds. As a main illustrating example, to every Courant algebroid…

### One-Dimensional Chern-Simons Theory

- Physics
- 2011

We study a one-dimensional toy version of the Chern-Simons theory. We construct its simplicial version which comprises features of a low-energy effective gauge theory and of a topological quantum…

### ON UNITARY REPRESENTATIONS OF NILPOTENT LIE GROUPS.

- MathematicsProceedings of the National Academy of Sciences of the United States of America
- 1957

IThis follows from Theorem 1 in D. Montgomery, H. Samelson, and L. Zippin, "Singular Points of a Compact Transformation Group," Ann. Math., 63, 1-9, 1956. 2 E. Spanier and H. H. C. Whitehead, "On…