# Chebyshev's conjecture and the prime number race

@article{Ford2002ChebyshevsCA, title={Chebyshev's conjecture and the prime number race}, author={Kevin Ford and Sergei Konyagin}, journal={arXiv: Number Theory}, year={2002}, pages={67-91} }

We survey results about prime number races, that is, results about the relative sizes of prime counting functions $\pi_{q,a}(x)$, with $q$ fixed and $a$ varying. In particular, we describe recent work by the authors on these problems.

## 17 Citations

Chebyshev's Bias for Products of Two Primes

- Mathematics, Computer ScienceExp. Math.
- 2010

Under two assumptions, we determine the distribution of the difference between two functions each counting the numbers less than or equal to x that are in a given arithmetic progression modulo q and…

Fujii’s development on Chebyshev’s conjecture

- MathematicsInternational Journal of Number Theory
- 2019

Chebyshev presented a conjecture after observing the apparent bias towards primes congruent to [Formula: see text]. His conjecture is equivalent to a version of the Generalized Riemann Hypothesis.…

Limiting Properties of the Distribution of Primes in an Arbitrarily Large Number of Residue Classes

- MathematicsCanadian Mathematical Bulletin
- 2020

Abstract We generalize current known distribution results on Shanks–Rényi prime number races to the case where arbitrarily many residue classes are involved. Our method handles both the classical…

Orderings of weakly correlated random variables, and prime number races with many contestants

- Mathematics
- 2015

We investigate the race between prime numbers in many residue classes modulo q, assuming the standard conjectures GRH and LI. Among our results we exhibit, for the first time, n-way prime number…

THE PRIME NUMBER RACE AND ZEROS OF DIRICHLET L-FUNCTIONS OFF THE CRITICAL LINE: PART III

- Mathematics
- 2012

We show, for any q > 3 and distinct reduced residues a,b (mod q), the existence of certain hypothetical sets of zeros of Dirichlet L-functions lying off the critical line implies that �(x;q,a) <…

Inequities in the Shanks-Renyi prime number race over function fields

- Mathematics
- 2021

Fix a prime p > 2 and a finite field Fq with q elements, where q is a power of p. Let m be a monic polynomial in the polynomial ring Fq[T ] such that deg(m) is large. Fix an integer r > 2, and let…

Chebyshev's bias for products of irreducible polynomials

- MathematicsAdvances in Mathematics
- 2021

For any $k\geq 1$, this paper studies the number of polynomials having $k$ irreducible factors (counted with or without multiplicities) in $\mathbf{F}_q[t]$ among different arithmetic progressions.…

Chebyshev's bias for products of $k$ primes

- Mathematics
- 2016

For any $k\geq 1$, we study the distribution of the difference between the number of integers $n\leq x$ with $\omega(n)=k$ or $\Omega(n)=k$ in two different arithmetic progressions, where $\omega(n)$…

11T55 Arithmetic theory of polynomial rings over finite fields 11N45 Asymptotic results on counting functions for algebraic and topological structures

- 2021

For any k ≥ 1, this paper studies the number of polynomials having k irreducible factors (counted with or without multiplicities) in Fq[t] among different arithmetic progressions. We obtain…

Chebyshev’s bias for analytic L-functions

- MathematicsMathematical Proceedings of the Cambridge Philosophical Society
- 2019

Abstract We discuss the generalizations of the concept of Chebyshev’s bias from two perspectives. First, we give a general framework for the study of prime number races and Chebyshev’s bias attached…

## References

SHOWING 1-10 OF 80 REFERENCES

A formula for the exact number of primes below a given bound in any arithmetic progression

- MathematicsBulletin of the Australian Mathematical Society
- 1977

The formula of [E.] Meissel [Math. Ann. 2 (1870), 636–642] is generalized to arbitrary arithmetic progressions. Meissel's formula is applicable not only to computation of π(x) for large x (recently x…

THE PRIME NUMBER RACE AND ZEROS OF L-FUNCTIONS OFF THE CRITICAL LINE

- Mathematics
- 2002

We examine the effects of certain hypothetical configurations of zeros of Dirichlet L-functions lying off the critical line on the distribution of primes in arithmetic progressions.

The segmented sieve of eratosthenes and primes in arithmetic progressions to 1012

- Mathematics
- 1977

The sieve of Eratosthenes, a well known tool for finding primes, is presented in several algorithmic forms. The algorithms are analyzed, with theoretical and actual computation times given. The…

Chebyshev's Bias

- Mathematics, Computer ScienceExp. Math.
- 1994

It is shown that the bias to the distribution to primes in ideal classes in number fields, and to prime geodesics in homology classes on hyperbolic surfaces, can be characterized exactly those moduli and residue classes for which the bias is present.

Numerical computations concerning the ERH

- Mathematics
- 1993

This paper describes a computation which established the ERH to height 10000 for all primitive Dirichlet L-series with conductor Q < 13, and to height 2500 for all Q < 72, all composite Q < 112, and…

Multiplicative Number Theory

- Mathematics
- 1967

From the contents: Primes in Arithmetic Progression.- Gauss' Sum.- Cyclotomy.- Primes in Arithmetic Progression: The General Modulus.- Primitive Characters.- Dirichlet's Class Number Formula.- The…

Biases in the Shanks—Rényi Prime Number Race

- Mathematics, Computer ScienceExp. Math.
- 2000

A general formula is derived for the densities δq;al , …,ar, and this formula is used to calculate many of these densities when q ≤ 12 and r ≤ 4, and several situations in which the density remain unchanged under certain permutations of the aj.

Computing n(X) the meissel-lehmer method

- Mathematics
- 1985

E. D. F. Meissel, a German astronomer, found in the 1870’s a method for computing individual values of π(x), the counting function for the number of primes ≤ x. His method was based on recurrences…

Quadratic Residues and the Distribution of Primes

- Mathematics
- 1959

Since\/?i/log n —» oo, ir~(n) could thus be made to exceed ir+(n) by any amount by an appropriate choice of n. This theorem (which was one of the above-mentioned three senses) was proven by Phragmén,…

Zeros of Dirichlet L-functions near the Real Axis and Chebyshev's Bias

- Mathematics
- 2001

Abstract We examine the connections between small zeros of quadratic L-functions, Chebyshev's bias, and class numbers of imaginary quadratic fields.