Corpus ID: 119143685

Characterizing Jacobians via trisecants of the Kummer Variety

@inproceedings{IKrichever2006CharacterizingJV,
  title={Characterizing Jacobians via trisecants of the Kummer Variety},
  author={I.Krichever},
  year={2006}
}
We prove Welter's trisecant conjecture: an indecomposable principally polarized abelian variety $X$ is the Jacobian of a curve if and only if there exists a trisecant of its Kummer variety $K(X)$. 
10 Citations
Schottky via the punctual Hilbert scheme
  • PDF
Theta divisors with curve summands and the Schottky problem
  • 9
  • PDF
Abelian solutions of the soliton equations and Riemann-Schottky problems
  • 1
  • PDF
Soliton equations and the Riemann-Schottky problem
  • 4
  • PDF
A G ] 1 N ov 2 01 1 Soliton equations and the Riemann-Schottky problem
  • PDF
Abelian solutions of the KP equation
  • 8
  • PDF
Final Remarks and Open Problems Appendix A : Subvarieties of the Siegel Modular Variety Appendix B : Extending of the Torelli Map to Toroidal Compactifications of the Siegel Modular Variety Appendix C : Singular Modular Forms Appendix
  • 2018