Characterization of two different Ly-1+ T cell populations that mediate delayed-type hypersensitivity.

Abstract

This paper describes two functionally different T cell populations that mediate delayed-type hypersensitivity (DTH) reactions in contact-sensitized mice. Both of these T cells are Ly-1+, Qa-2-, and Vicia villosa lectin nonadherent. One of these T cell subpopulations is responsible for the classical 24- to 48-hr component of DTH reactions, is induced 3 to 4 days after immunization, is H-2 restricted, is sensitive to irradiation and to antigen-specific T cell-derived suppressor factors, and is found in nylon wool-nonadherent as well as nylon wool-adherent populations. In contrast, the T cell population that is responsible, via an antigen-specific T cell factor, for a recently described early component of DTH, which is an obligatory initial step for expression of DTH, is induced within 24 hr after immunization, requires much less antigen for immunization, is not H-2 restricted, is not sensitive to irradiation nor to T suppressor factors, and is found exclusively in the nylon wool-nonadherent fraction. These results support a new formulation of DTH. According to this formulation, Ly-1+ T cells produce an antigen-specific, tissue-sensitizing, mast cell-activating factor, and via this factor induce the early component of DTH, which is an obligatory first step in which local antigen challenge induces increased local vascular permeability. This required opening of gaps between endothelial cells is due to T cell factor-dependent release of the vasoactive amine serotonin from cells such as mast cells. This first step allows the second, H-2-restricted, Ly-1+ T cell population to enter the reaction site, and to then be triggered by antigen to release lymphokines that attract the subsequent influx of blood-borne, bone marrow-derived leukocytes to constitute the classical delayed-in-time component of DTH reactions.

Cite this paper

@article{Loveren1984CharacterizationOT, title={Characterization of two different Ly-1+ T cell populations that mediate delayed-type hypersensitivity.}, author={Henk van Loveren and Kentaro Kato and Ray Meade and Douglas R Green and Mark Horowitz and Wlodzimierz Ptak and Philip W. Askenase}, journal={Journal of immunology}, year={1984}, volume={133 5}, pages={2402-11} }