Chapter 9 Gauss Map II 9 . 1 Mean and Gaussian Curvatures of Sur - faces in

    Abstract

    3 We'll assume that the curves are in R 3 unless otherwise noted. We start off by quoting the following useful theorem about self adjoint linear maps over R 2 : Theorem 9.1.1 (Do Carmo pp. 216). : Let V denote a two dimensional vector space over R. Let A : V → V be a self adjoint linear map. Then there exists an orthonormal basis e 1 , e 2 of V such that A… (More)

    Topics

    Cite this paper

    @inproceedings{Chapter9G, title={Chapter 9 Gauss Map II 9 . 1 Mean and Gaussian Curvatures of Sur - faces in}, author={} }