Chaos in Miles ’ equations

  title={Chaos in Miles ’ equations},
  author={Y. Charles Li},
Miles’ equation models the amplitude modulation of a Faraday wave. A dynamical system study is conducted on this concrete physical model. It turns out that a quartet of heteroclinic orbits can be located, but we fail to locate any homoclinic orbit. For a generalized Miles’ equation, a quartet of homoclinic orbits can be located, and existence of chaos can be proved under certain generic assumptions. 2004 Elsevier Ltd. All rights reserved. 
2 Citations
15 References
Similar Papers


Publications citing this paper.
Showing 1-2 of 2 extracted citations


Publications referenced by this paper.
Showing 1-10 of 15 references

On a peculiar class of acoustical figures, and on certain forms assumed by groups of particles upon vibrating elastic surfaces

  • M. Faraday
  • Phil Trans R Soc Lond 1831;121:299
  • 2004
Highly Influential
9 Excerpts

Persistent homoclinic orbits for a perturbed nonlinear Schr€ odinger equation

  • Y Li
  • Comm Pure Appl Math 1996;49(11):1175
  • 1996
Highly Influential
3 Excerpts

On maintained vibrations

  • L Rayleigh
  • Phil Mag
  • 2004

Patterns of Faraday waves

  • Westra M-T
  • J Fluid Mech 2003;496:1
  • 2003
1 Excerpt

Singularly perturbed vector and scalar nonlinear Schr€ odinger equations with persistent homoclinic orbits

  • Y. Li
  • Stud Appl Math 2002;109(1):19
  • 2002
1 Excerpt

Square patterns and secondary instabilities in driven capillary waves

  • S. Milner
  • J Fluid Mech 1991;225:81
  • 1991
1 Excerpt

Nonlinear Faraday resonance

  • JW Miles
  • J Fluid Mech 1984;146:285
  • 1984
1 Excerpt

Observation of a non-propagating hydrodynamic solution

  • J Wu, R Keolian, I. Rudnick
  • Phys Rev Lett 1984;52:1421
  • 1984
2 Excerpts

Similar Papers

Loading similar papers…