Channeling during prothrombin activation.

Abstract

The plasma zymogen prothrombin (II) is converted to the clotting enzyme thrombin (IIa) by two prothrombinase-catalyzed proteolytic cleavages. Thus, two intermediates, meizothrombin (mIIa) and prethrombin-2 (P2), are possible on the reaction pathway. Measurements of the time courses of II, mIIa, P2, and IIa suggested a channeling phenomenon, whereby a portion of the II is converted directly to IIa without free mIIa and P2 as obligatory intermediates. Evidence for this was that the maximum rate of IIa formation preceded the maximum in the level of either intermediate. In addition, analysis of the data according to a model that included two parallel pathways through mIIa and P2 indicated that about 40% of the II consumed did not yield free mIIa or P2. Further studies were carried out in which II was continuously infused in a reactor at a constant rate. Under these conditions II, mIIa, and P2 reached constant steady-state levels, and IIa was produced at a constant rate, equal to that of II infusion. During the steady state, traces of II, mIIa, and P2 were introduced as radiolabels. Time courses of isotope consumption were first order, thus allowing the rates of consumption of II, mIIa, and P2 to be calculated. Under these conditions the rate of II consumption equaled the rate of IIa formation. Rates of consumption of the free intermediates, however, were only 22 (mIIa) and 15% (P2), respectively, of the rate of thrombin formation. Thus, both the time course experiments and the steady-state experiments indicate that an appreciable fraction of II is channeled directly to IIa without proceeding through the free intermediates mIIa and P2.

Cite this paper

@article{Boskovic2001ChannelingDP, title={Channeling during prothrombin activation.}, author={Danilo S. Boskovic and Laszlo Bajzar and Michael E. Nesheim}, journal={The Journal of biological chemistry}, year={2001}, volume={276 31}, pages={28686-93} }