Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels

  • Erdal Arıkan
  • Published 2009

Abstract

A method is proposed, called channel polarization, to construct code sequences that achieve the symmetric capacity of any given binary-input discrete memoryless channel (B-DMC) . The symmetric capacity is the highest rate achievable subject to using the input letters of the channel with equal probability. Channel polarization refers to the fact that it is possible to synthesize, out of independent copies of a given B-DMC , a second set of binary-input channels such that, as becomes large, the fraction of indices for which is near approaches and the fraction for which is near approaches . The polarized channels are well-conditioned for channel coding: one need only send data at rate through those with capacity near and at rate through the remaining. Codes constructed on the basis of this idea are called polar codes. The paper proves that, given any B-DMC with and any target rate , there exists a sequence of polar codes such that has block-length , rate , and probability of block error under successive cancellation decoding bounded as independently of the code rate. This performance is achievable by encoders and decoders with complexity for each.

Extracted Key Phrases

12 Figures and Tables

0501001502008200920102011201220132014201520162017
Citations per Year

841 Citations

Semantic Scholar estimates that this publication has 841 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@inproceedings{Arkan2009ChannelPA, title={Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels}, author={Erdal Arıkan}, year={2009} }