Change Detection in Feature Space Using Local Binary Similarity Patterns


In general, the problem of change detection is studied in color space. Most proposed methods aim at dynamically finding the best color thresholds to detect moving objects against a background model. Background models are often complex to handle noise affecting pixels. Because the pixels are considered individually, some changes cannot be detected because it involves groups of pixels and some individual pixels may have the same appearance as the background. To solve this problem, we propose to formulate the problem of background subtraction in feature space. Instead of comparing the color of pixels in the current image with colors in a background model, features in the current image are compared with features in the background model. The use of a feature at each pixel position allows accounting for change affecting groups of pixels, and at the same time adds robustness to local perturbations. With the advent of binary feature descriptors such as BRISK or FREAK, it is now possible to use features in various applications at low computational cost. We thus propose to perform background subtraction with a small binary descriptor that we named Local Binary Similarity Patterns (LBSP). We show that this descriptor outperforms color, and that a simple background subtractor using LBSP outperforms many sophisticated state of the art methods in baseline scenarios.

DOI: 10.1109/CRV.2013.29

Extracted Key Phrases

8 Figures and Tables

Citations per Year

Citation Velocity: 10

Averaging 10 citations per year over the last 3 years.

Learn more about how we calculate this metric in our FAQ.

Cite this paper

@article{Bilodeau2013ChangeDI, title={Change Detection in Feature Space Using Local Binary Similarity Patterns}, author={Guillaume-Alexandre Bilodeau and Jean-Philippe Jodoin and Nicolas Saunier}, journal={2013 International Conference on Computer and Robot Vision}, year={2013}, pages={106-112} }