Centralizer construction for twisted Yangians

  title={Centralizer construction for twisted Yangians},
  author={Alexander Molev and Grigori Olshanski},
  journal={Selecta Mathematica},
Abstract. For each of the classical Lie algebras $ {\frak g}(n)={\frak o}(2n+1)$, $ {\frak {sp}(2n),{\frak o}(2n)} $ of type B, C, D we consider the centralizer of the subalgebra $ {\frak o}(2n-2m) $ or $ {\frak {sp}}(2n-2m) $, respectively, in the universal enveloping algebra $ \text{\rm U}({\frak g}(n)) $. We show that the nth centralizer algebra can be naturally projected onto the (n-1)th one, so that one can form the projective limit of the centralizer algebras as $ n\to\infty $ with m… CONTINUE READING