Central Limit Theorems for Open Quantum Random Walks∗


Open Quantum Random Walks, as developed in [1], are the exact quantum generalization of Markov chains on finite graphs or on nets. These random walks are typically quantum in their behavior, step by step, but they seem to show up a rather classical asymptotic behavior , as opposed to the quantum random walks usually considered in Quantum Information Theory (such as the well-known Hadamard random walk). Typically, in the case of Open Quantum Random Walks on nets, their distribution seems to always converges to a Gaussian distribution or a mixture of Gaussian distributions. In the case of nearest neighbors homogeneous Open Quantum Random Walks on Z d we prove such a Central Limit Theorem, in the case where only one Gaussian distribution appears in the limit. Through the quantum trajectory point of view on quantum master equations, we transform the problem into studying a certain functional of a Markov chain on Z d times the Banach space of quantum states. The main difficulty is that we know nothing about the invariant measures of this Markov chain, even their existence. Surprisingly enough, we are able to produce a Central Limit Theorem with explicit drift and explicit covariance matrix. In a second step we are able to extend our Central Limit Theorem to the case of several asymptotic Gaussians, in the case where the operator coefficients of the quantum walk are block-diagonal in a common basis.

Showing 1-4 of 4 references

A Pathwise Ergodic Theorem for Quantum Trajectories

  • B Kummerer, H Maassen
  • 2004

Heyde: Martingale Limit Theory and its Applications

  • P Hall
  • 1980