Cellular cochain algebras and torus actions

@inproceedings{Baskakov2004CellularCA,
  title={Cellular cochain algebras and torus actions},
  author={Ilia V Baskakov and Victor Matveevich Buchstaber and Taras E. Panov},
  year={2004}
}
. Cellular cochains do notadmit a functorial associative multiplication because a proper cellular diag-onal approximation does not exist in general. The construction of moment-angle complexes is a functor from the category of simplicial complexes to thecategory of spaces with torus action. We show that in this special case theproposed cellular approximation of the diagonal is associative and functorialwith respect to those maps of moment-angle complexes which are inducedby simplicial maps.The… CONTINUE READING

References

Publications referenced by this paper.
SHOWING 1-6 OF 6 REFERENCES

Torus actions, equivariant moment-angle complexes, and configurations of coordinate subspaces

  • M Victor, Buchstaber, E Taras, Panov
  • Russian) Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI)
  • 2000

Torus actions, equivariant moment-angle complexes, and configurations of coordinate subspaces. (Russian) Zap

  • Victor M Buchstaber, Taras E Panov
  • Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI),
  • 2000