Cell-cell fusion and internalization of the CNS-based, HIV-1 co-receptor, APJ.

Abstract

APJ, a member of the human G protein-coupled seven-transmembrane receptor family, has been shown to serve as a coreceptor for the entry of human immunodeficiency virus type I (HIV-1) and simian immunodeficiency virus (SIV), and it is dramatically expressed in central nervous system (CNS)-based cells. In this study, expression of APJ tagged with the green fluorescent protein (GFP) and a fluorescent peptide, 5-carboxyfluorescein (5-CF) conjugated Apelin-13, were utilized for studying receptor internalization and recycling, in stably expressing indicator cells, human neurons, primary CNS microvascular endothelial cells (MVECs), and astrocytes. Fusion of the C-terminus of APJ to the N-terminus of GFP did not alter receptor ligand binding and functions, including signaling and internalization. Using 293 cells stably expressing APJ-GFP, we demonstrated that rapid internalization of the APJ receptor was induced by stimulation with Apelin-36 and Apelin-13, in a dose-dependent manner. Furthermore, investigations showed that the internalized APJ was colocalized with transferrin receptors, suggesting that the internalization of APJ induced by Apelin is likely to be via clathrin-coated pits. Interestingly, we found that the internalized APJ molecules were recycled to the cell surface within 60 min after removal of Apelin-13, but most of the internalized APJ still remained in the cytoplasm, even 2 h after washout of Apelin-36. The intact cytoplasmic C-terminal domain was found to be required for ligand-induced APJ internalization. Human neurons were dramatically stained by the APJ-binding fluorescent peptides. Primary human fetal astrocytes were less strongly labeled with 5-CF-Apelin-13, and in primary human CNS MVECs only weak distribution of green fluorescence specific for APJ in the cytoplasm was observed. Apelin-36 blocked cell membrane fusion mostly due to steric interference, with only a very modest effect on receptor internalization. The CNS represents a unique reservoir site for HIV-1. As such, molecular therapeutics and small molecular inhibitors of HIV-1 entry via this unique CNS receptor are now able to be rationally designed.

050100'04'05'06'07'08'09'10'11'12'13'14'15'16'17
Citations per Year

201 Citations

Semantic Scholar estimates that this publication has 201 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Zhou2003CellcellFA, title={Cell-cell fusion and internalization of the CNS-based, HIV-1 co-receptor, APJ.}, author={Naiming Zhou and Xuejun Fan and Muhammad Fahad Mukhtar and Jianhua Fang and Charvi A. Patel and Garrett Dubois and Roger J. Pomerantz}, journal={Virology}, year={2003}, volume={307 1}, pages={22-36} }