Categorification of the polynomial ring

@article{Khovanov2010CategorificationOT,
  title={Categorification of the polynomial ring},
  author={M. Khovanov and R. Sazdanovic},
  journal={arXiv: Quantum Algebra},
  year={2010}
}
We develop a diagrammatic categorification of the polynomial ring $Z[x]$. Our categorification satisfies a version of Bernstein-Gelfand-Gelfand reciprocity property with the indecomposable projective modules corresponding to $x^n$ and standard modules to $(x-1)^n$ in the Grothendieck ring. 
9 Citations
How to categorify the ring of integers localized at two
  • 3
  • PDF
Extremal weight projectors
  • 7
  • PDF
Towards functor exponentiation
  • PDF
Diagrammatics in Art and Mathematics
  • 1
  • PDF
Sheaves are the canonical datastructure for sensor integration
  • 6
  • PDF

References

SHOWING 1-9 OF 9 REFERENCES
An introduction to homological algebra
  • 2,737
Methods of Homological Algebra
  • 891
Representations and Cohomology
  • 823
  • Highly Influential
Elements of the Representation Theory of Associative Algebras
  • 1,223
  • Highly Influential
Yu
  • Manin, Methods of homological algebra, Springer
  • 1996
Category of g - modules
  • Functional Anal . Appl .
  • 1991
Category of g-modules
  • Functional Anal. Appl. 10
  • 1976
Category ofg modules
  • 83