# Catalan without logarithmic forms (after Bugeaud, Hanrot and Mihăilescu)

@article{Bilu2005CatalanWL,
title={Catalan without logarithmic forms (after Bugeaud, Hanrot and Mihăilescu)},
author={Yuri F. Bilu},
journal={Journal de Theorie des Nombres de Bordeaux},
year={2005},
volume={17},
pages={69-85}
}
• Y. Bilu
• Published 2005
• Mathematics
• Journal de Theorie des Nombres de Bordeaux
C'est un rapport sur le travail recent de Bugeaud, Hanrot et Mihailescu, montrant qu'on peut demontrer l'hypothese de Catalan sans utiliser les formes logarithmiques, ni le calcul avec un ordinateur.
12 Citations
Etudes sur les équations de Ramanujan-Nagell et de Nagell-Ljunggren ou semblables
Dans cette these, on etudie deux types d'equations diophantiennes. Une premiere partie de notre etude porte sur la resolution des equations dites de Ramanujan-Nagell $Cx^2+b^{2m}D=y^n$. Une deuxieme
Perfect Powers: Pillai's works and their developments
A perfect power is a positive integer of the form $a^x$ where $a\ge 1$ and $x\ge 2$ are rational integers. Subbayya Sivasankaranarayana Pillai wrote several papers on these numbers. In 1936 and again
Mihăilescu’s Ideal
• Mathematics
• 2014
Let (x, y, p, q) be a solution of Catalan’s equation (with x, y nonzero integers and p, q odd primes) and G the Galois group of the cyclotomic field $$K = \mathbb{Q}(\zeta _{p})$$. From the previous
A Repulsion Motif in Diophantine Equations
• Mathematics
Am. Math. Mon.
• 2011
It turns out that a similar phenomenon seems, conjecturally, to be at work for solutions which are close to being integral in another sense, and suggests a bound on the size of integral solutions in terms of the coefficients of the defining equation.
Generalization of Ruderman's Problem to Imaginary Quadratic Fields
In 1974, H. Ruderman posed the following question: If (2 − 2)|(3 − 3), then does it follow that (2 − 2)|(x − x) for every integer x? This problem is still open. However, in 2011, M. R. Murty and V.
Progress in number theory in the years 1998-2009
We summarize the major results in number theory of the last decade.
Postęp w teorii liczb w latach 1998–2009
Osiem lat temu A. Schinzel opublikowal w Wiadomościach Matematycznych przegląd osiągniec teorii liczb w XX wieku. Niniejszy artykul stanowi rozszerzenie tego przeglądu o zaslugujące na uwage jedno
Introduction to Number Theory
• Mathematics
• 2007
One of the oldest branches of mathematics, number theory is a vast field devoted to studying the properties of whole numbers. Offering a flexible format for a one- or two-semester course,