Corpus ID: 119157235

Canonization of smooth equivalence relations on infinite-dimensional perfect cubes

@article{Kanovei2018CanonizationOS,
  title={Canonization of smooth equivalence relations on infinite-dimensional perfect cubes},
  author={Vladimir Kanovei and Vassily A. Lyubetsky},
  journal={arXiv: Logic},
  year={2018}
}
  • Vladimir Kanovei, Vassily A. Lyubetsky
  • Published 2018
  • Mathematics
  • arXiv: Logic
  • A canonization scheme for smooth equivalence relations on $\mathbb R^\omega$ modulo restriction to infinite perfect products is proposed. It shows that given a pair of Borel smooth equivalence relations $\mathsf E,\mathsf F$ on $\mathbb R^\omega$, there is an infinite perfect product $P\subseteq\mathbb R^\omega$ such that either ${\mathsf F}\subseteq{\mathsf E}$ on $P$, or, for some $j<\omega$, the following is true for all $x,y\in P$: $x\,\mathsf E \,y$ implies $x(j)=y(j)$, and $x\restriction… CONTINUE READING
    2
    Twitter Mentions

    References

    Publications referenced by this paper.
    SHOWING 1-4 OF 4 REFERENCES

    Non-Glimm–Effros equivalence relations at second projective level

    • FUNDAMENTA MATHEMATICAE
    • 2007
    VIEW 8 EXCERPTS
    HIGHLY INFLUENTIAL

    Iterated perfect-set forcing

    VIEW 8 EXCERPTS
    HIGHLY INFLUENTIAL

    Baumgartner and Richard Laver . Iterated perfect - set forcing

    • E. James
    • Ann . Math . Logic
    • 1979