Canonical structure in the universe of set theory: part one

@article{Cummings2004CanonicalSI,
  title={Canonical structure in the universe of set theory: part one},
  author={James Cummings and Matthew Foreman and Menachem Magidor},
  journal={Ann. Pure Appl. Logic},
  year={2004},
  volume={129},
  pages={211-243}
}
Abstract We prove a number of consistency results complementary to the ZFC results from our paper [J. Cummings, M. Foreman, M. Magidor, Canonical structure in the universe of set theory: part one, Annals of Pure and Applied Logic 129 (1–3) (2004) 211–243]. We produce examples of non-tightly stationary mutually stationary sequences, sequences of cardinals on which every sequence of sets is mutually stationary, and mutually stationary sequences not concentrating on a fixed cofinality. We also… CONTINUE READING

Topics from this paper.