Canonical quasilocal energy and small spheres

@inproceedings{Brown1999CanonicalQE,
  title={Canonical quasilocal energy and small spheres},
  author={Justin D. Brown and Stephen R. Lau and G P York},
  year={1999}
}
Consider the definitionE of quasilocal energy stemming from the Hamilton-Jacobi method as applied to the canonical form of the gravitational action. We examine E in the standard ‘‘small-sphere limit,’’ first considered by Horowitz and Schmidt in their examination of Hawking’s quasilocal mass. By the term small spherewe mean a cutS(r ), level in an affine radiusr , of the light coneNp belonging to a generic spacetime point p. As a power series inr , we compute the energy E of the gravitational… CONTINUE READING

References

Publications referenced by this paper.
Showing 1-10 of 18 references

Class

  • L. B. Szabados
  • Quantum Grav. 11, (1994); Class. Quantum Grav…
  • 1996
Highly Influential
6 Excerpts

Phys

  • A. J. Dougan, L. J. Mason
  • Rev. Lett. 67,
  • 1991
Highly Influential
7 Excerpts

in General Relativity and Gravitation

  • J. N. Goldberg
  • vol. 1, edited by A. Held
  • 1980
Highly Influential
4 Excerpts

Phys

  • J. D. Brown, S. R. Lau, J. W. York
  • Rev. D55,
  • 1997

Topological Methods in Nonlinear Analysis 10

  • A. Anderson, Y. Choquet-Bruhat, J. W. York
  • 353
  • 1997

Klainerman, The Global Nonlinear Stability of Minkowski Space (Princeton

  • S. D. Christodoulou
  • 1993

Phys

  • J. D. Brown, J. W. York
  • Rev. D47, 1407
  • 1993

Phys

  • J. W. York
  • Rev. D33, (1986); J. D. Brown, E. A. Martinez…
  • 1993

Class

  • A. J. Dougan
  • Quantum Grav. 9, 2461
  • 1992

in Gravitation and Geometry

  • J. W. York
  • eds. W. Rindler and A. Trautman
  • 1987