• Corpus ID: 56053039

Canonical heights on varieties with morphisms

@article{Call1993CanonicalHO,
  title={Canonical heights on varieties with morphisms},
  author={Gregory S. Call and Joseph H. Silverman},
  journal={Compositio Mathematica},
  year={1993},
  volume={89},
  pages={163-205}
}
© Foundation Compositio Mathematica, 1993, tous droits réservés. L’accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. 
A weak Néron model with applications to $p$-adic dynamical systems
© Foundation Compositio Mathematica, 1996, tous droits réservés. L’accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l’accord avec les conditions
Speculations about the topology of rational points: an update
© Société mathématique de France, 1995, tous droits réservés. L’accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l’accord avec les
Propriétés arithmétiques d'une famille de surfaces K3
We study a family of K3 surfaces which have a big automorphism group. We begin with generalisations of Silverman's results: construction of canonical heights, density of rational points in one
Géométrie d'Arakelov et hauteurs canoniques sur des variétés semi-abéliennes
Canonical heights and Arakelov geometry on semi-abelian varieties. In this paper, we propose a construction of the canonical heights on an extension of an abelian variety by the multiplicative
Good height functions on quasi-projective varieties: equidistribution and applications in dynamics
— In the present article, we define a notion of good height functions on quasi-projective varieties V defined over number fields and prove an equidistribution theorem of small points for such height
Points périodiques des automorphismes affines.
1. Motivations Designons par K un corps commutatif, par K[Xi9 . . . , Xn~] l'anneau des polyn mes en n indeterminees coefficients dans K et par A l'espace affine de dimension n. Supposons de plus que
Cohomological conditions on endomorphisms of projective varieties
We characterize possible periodic subvarieties for surjective endomorphisms of complex abelian varieties in terms of the eigenvalues of the cohomological actions induced by the endomorphisms,
Canonical heights, transfinite diameters, and polynomial dynamics, preprint
Let φ(z) be a polynomial of degree at least 2 with coefficients in a number field K. Iterating φ gives rise to a dynamical system and a corresponding canonical height function ĥφ, as defined by Call
Canonical heights, transfinite diameters, and polynomial dynamics
Abstract Let ϕ(z ) be a polynomial of degree at least 2 with coefficients in a number field K. Iterating ϕ gives rise to a dynamical system and a corresponding canonical height function ĥϕ , as
Ample canonical heights for endomorphisms on projective varieties
We define an "ample canonical height" for an endomorphism on a projective variety, which is essentially a generalization of the canonical heights for polarized endomorphisms introduced by
...
...

References

SHOWING 1-10 OF 26 REFERENCES
Heights and the specialization map for families of abelian varieties.
Let C be a non-singular projective curve, and let A — > C be a (flat) family of abelian varieties, all defmed over a global field K. There are three natural height functions associated to such a
Rational points on K3 surfaces: A new canonical height
A fundamental tenet of Diophantine Geometry is that the geometric properties of an algebraic variety should determine its basic arithmetic properties. This is certainly true for curves, where the
HEIGHT ON FAMILIES OF ABELIAN VARIETIES
Let be an abelian variety imbedded in projective space, and let be an induced invertible sheaf on . In this paper explicit bounds are determined for the difference , where is the Neron-Tate height
Variation of the canonical height on elliptic surfaces I: Three examples.
with al9 . . . , a6 e K(C\ and for all but finitely many t E C(K) we can evaluate the af's at t to obtain an elliptic curve EJK. Suppose further that we are given a (non-zero) section P : C -> E
Number Theory III: Diophantine Geometry
From the reviews: "Between number theory and geometry there have been several stimulating influences, and this book records of these enterprises. This author, who has been at the centre of such
Arithmetic distance functions and height functions in diophantine geometry
In virtually all areas of Diophantine Geometry, the theory of height functions plays a crucial role. This theory associates to each (Cartier) divisor D on a projective variety V a function ho mapping
Computing heights on elliptic curves
We describe how to compute the canonical height of points orn elliptic curves. Tate has given a rapidly converging series for Archimedean local heights over R. We describe a modified version of
Algebraic Geometry
Introduction to Algebraic Geometry.By Serge Lang. Pp. xi + 260. (Addison–Wesley: Reading, Massachusetts, 1972.)
THE p-TORSION OF ELLIPTIC CURVES IS UNIFORMLY BOUNDED
It is shown that the p-component of the torsion of elliptic curves over a numerical field is bounded.
K3-surfaces with Picard number 2
...
...