Canonical bases arising from quantum symmetric pairs

@article{Bao2016CanonicalBA,
  title={Canonical bases arising from quantum symmetric pairs},
  author={Huanchen Bao and W. Wang},
  journal={Inventiones mathematicae},
  year={2016},
  volume={213},
  pages={1099-1177}
}
We develop a general theory of canonical bases for quantum symmetric pairs $$({\mathbf{U}}, {\mathbf{U}}^\imath )$$(U,Uı) with parameters of arbitrary finite type. We construct new canonical bases for the finite-dimensional simple $${\mathbf{U}}$$U-modules and their tensor products regarded as $${\mathbf{U}}^\imath $$Uı-modules. We also construct a canonical basis for the modified form of the $$\imath $$ıquantum group $${\mathbf{U}}^\imath $$Uı. To that end, we establish several new structural… Expand
45 Citations

Tables from this paper

References

SHOWING 1-10 OF 31 REFERENCES
Braided module categories via quantum symmetric pairs
  • 23
  • PDF
Universal K-matrix for quantum symmetric pairs
  • 45
  • PDF
Positivity vs negativity of canonical bases
  • Y. Li, Weiqiang Wang
  • Mathematics
  • 2015
  • 22
  • Highly Influential
  • PDF
Quantum symmetric Kac–Moody pairs
  • 128
  • Highly Influential
  • PDF
Kazhdan-Lusztig Theory of super type D and quantum symmetric pairs
  • 26
  • PDF
...
1
2
3
4
...