Calorimetric and potentiometric characterization of the ionization behavior of ribonuclease A and its complex with 3'-cytosine monophosphate.

Abstract

The proton association behavior of ribonuclease A and its complex with 3'-cytosine monophosphate has been thermodynamically characterized in the pH range 4--8 at 25 degrees, mu = 0.05. Calorimetric and potentiometric titration data have been used to estimate the apparent pK values and enthalpy values for protonation of the four histidine residues of the protein, deltaHp. In the free enzyme the pK values were deduced to be 5.0, 5.8, 6.6, and 6.7 and deltaHp deduced to be -6.5, -6.5, -6.5, and -24 kcal/mol for residues 119, 12, 105, and 48, respectively. For the nucleotide-enzyme complex it was concluded that the apparent pK values of residues 119, 12, and 48 increased to an average value of about 7.2, the deltaHp values remaining constant for all histidine groups except 48. It was also concluded that only the dianionic phosphate form of the nucleotide inhibitor is bound to the enzyme in this pH range. These results are consistent with a thermodynamic model for the binding reaction in which inhibitor-enzyme association is coupled to the ionization of three imidazole residues (12, 119, and 48) and the interaction between the negative phosphate moiety of the inhibitor and the positively charged residues 12 and 119 is purely electrostatic. However, the "interaction" with residue 48 probably involves a conformational rearrangement of the macromolecule.

Cite this paper

@article{Flogel1975CalorimetricAP, title={Calorimetric and potentiometric characterization of the ionization behavior of ribonuclease A and its complex with 3'-cytosine monophosphate.}, author={Mirna Flogel and Rodney L. Biltonen}, journal={Biochemistry}, year={1975}, volume={14 12}, pages={2603-9} }